Advertisement

Journal of Experimental and Theoretical Physics

, Volume 127, Issue 4, pp 587–592 | Cite as

Self-Similar Character of Generation of Superradiance Pulses in an Electron–Wave Backward Wave Oscillator

  • A. A. Rostuntsova
  • N. M. Ryskin
ATOMS, MOLECULES, OPTICS
  • 13 Downloads

Abstract

The phenomenon of superradiance of electron bunches provides a promising method for generating high-power ultrashort electromagnetic pulses. In the present paper, it is shown that the equations describing the interaction between an electron beam and an electromagnetic wave in a BWO-type oscillator admit a self-similar solution that describes an amplifying and compressing pulse. It is demonstrated by numerical simulation that the generation of short superradiance pulses is of self-similar character at the initial stage of the transient process. The specific features of the main characteristics of such pulses (the amplitude and width of a pulse and the coordinates of its maximum) are investigated as a function of time and control parameters. It is shown that, after a transient process, the solution reaches the self-similar stage, where the pulse amplitude and the inverse of its squared width grow linearly with time.

Notes

ACKNOWLEDGMENTS

The authors are grateful to N.S. Ginzburg and I.V. Zotova for their attention to the work and stimulating discussions.

REFERENCES

  1. 1.
    N. S. Ginzburg, I. V. Zotova, A. S. Sergeev, et al., Izv. Vyssh. Uchebn. Zaved., Radiofiz. 54, 588 (2011).Google Scholar
  2. 2.
    N. S. Ginzburg, I. V. Zotova, A. W. Cross, et al., IEEE Trans. Plasma Sci. 41, 646 (2013).ADSCrossRefGoogle Scholar
  3. 3.
    N. S. Ginzburg, S. P. Kuznetsov, and T. N. Fedoseeva, Radiophys. Quantum Electron. 21, 728 (1979).Google Scholar
  4. 4.
    A. A. El’chaninov, S. D. Korovin, V. V. Rostov, I. S. Pegel, G. A. Mesyats, M. I. Yalandin, and N. S. Ginzburg, JETP Lett. 77, 266 (2003).ADSCrossRefGoogle Scholar
  5. 5.
    G. A. Mesyats and M. I. Yalandin, Phys. Usp. 48, 211 (2005).ADSCrossRefGoogle Scholar
  6. 6.
    M. I. Yalandin, A. G. Reutova, M. R. Ul’maskulov, K. A. Sharypov, S. A. Shunailov, N. S. Ginzburg, I. V. Zotova, E. R. Kocharovskaya, and A. S. Sergeev, JETP Lett. 91, 553 (2010).ADSCrossRefGoogle Scholar
  7. 7.
    N. S. Ginzburg, I. V. Zotova, and A. S. Sergeev, J. Exp. Theor. Phys. 113, 772 (2011).ADSCrossRefGoogle Scholar
  8. 8.
    N. M. Ryskin, N. S. Ginzburg, and I. V. Zotova, Tech. Phys. Lett. 39, 446 (2013).ADSCrossRefGoogle Scholar
  9. 9.
    N. M. Ryskin, N. S. Ginzburg, and I. V. Zotova, in Proceedings of the 14th International Vacuum Electronics Conference IVEC 2013, Paris, France, 2013 (paper no. 6570957).Google Scholar
  10. 10.
    N. M. Ryskin, Commun. Nonlin. Sci. Numer. Simul. 19, 2942 (2014).MathSciNetCrossRefGoogle Scholar
  11. 11.
    D. I. Trubetskov and A. E. Khramov, Lectures on Superhigh Frequency Electronics for Physicists (Fizmatlit, Moscow, 2003) [in Russian].Google Scholar
  12. 12.
    S. P. Kuznetsov, Izv. Vyssh. Uchebn. Zaved., Prikl. Nelin. Din. 14 (4), 3 (2006).Google Scholar
  13. 13.
    G. I. Barenblatt, Similarity, Self-Similarity, and Intermediate Asymptotics: Theory and Applications to Geophysical Hydrodynamics (Gidrometeoizdat, Leningrad, 1982) [in Russian].Google Scholar
  14. 14.
    A. D. Polyanin, V. F. Zaitsev, and A. I. Zhurov, Methods for the Solution of Nonlinear Equations of Mathematical Physics and Mechanics (Fizmatlit, Moscow, 2005) [in Russian].Google Scholar
  15. 15.
    I. V. Bandurkin and A. V. Savilov, Appl. Phys. Lett. 99, 193506 (2011).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  1. 1.Saratov State UniversitySaratovRussia
  2. 2.Kotel’nikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, Saratov BranchSaratovRussia

Personalised recommendations