Advertisement

Journal of Experimental and Theoretical Physics

, Volume 127, Issue 3, pp 566–580 | Cite as

Coherent Transport of Electron Excitations in Organic Solar Cells

  • V. A. BenderskiiEmail author
  • E. I. Kats
Statistical, Nonlinear, and Soft Matter Physics
  • 15 Downloads

Abstract

The mechanisms of formation and coherent transport of free and bound electron excited states in organic solar cells are considered. In the model of a photocell (one-dimensional chain of photosensitive molecules in a uniform electric field of the p–n junction), the energy eigenvalues and the eigenfunctions of molecular excitons, charge-transfer excitons (CTE), and electron–hole pairs are determined. It is assumed that processes of transport between adjacent sites dominate in the case of the Coulomb interaction between the electron and the hole constituting a CTE. With decreasing Coulomb coupling energy, the CTE wavefunctions become superpositions of localized functions of the increasing number of sites. The decay time determined by independent transitions of the electron and the hole in this case becomes shorter than the transport time of the CTE as a whole. It is shown that autoionization of molecular excitons and small-radius CTEs in a strong electric field of a nanosize chain induces the mixing of states of these excitons as well as of electron–hole pairs, which substantially increases the quantum yield of the photoeffect.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. E. Lyons, J. Chem. Soc. (Resumed), 5001 (1957).Google Scholar
  2. 2.
    D. Kearns and M. Calvin, J. Chem. Phys. 29, 950 (1958).ADSCrossRefGoogle Scholar
  3. 3.
    V. A. Benderskii, N. N. Usov, and M. I. Fedorov, Dokl. Akad. Nauk SSSR 183, 1117 (1968).Google Scholar
  4. 4.
    M. I. Fedorov and V. A. Benderskii, Sov. Phys. Semicond. 4, 1198 (1970).Google Scholar
  5. 5.
    A. K. Ghosh, D. L. Morel, T. Feng, R. F. Shaw, and C. A. Rowe, J. Appl. Phys. 45, 230 (1974).ADSCrossRefGoogle Scholar
  6. 6.
    M. Pope and C. E. Swenberg, Electronic Processes in Organic Crystals and Polymers (Oxford Univ. Press., Oxford, 1982).Google Scholar
  7. 7.
    V. May and O. Kuhn, Charge and Energy Transfer Dynamics in Molecular Systems (Wiley, Berlin, 2000).Google Scholar
  8. 8.
    Organic Solar Cells, Ed. by W. C. H. Choy (Springer, Berlin, 2013).Google Scholar
  9. 9.
    D. Wohrle and D. Meissner, Adv. Mater. 3, 129 (1991).CrossRefGoogle Scholar
  10. 10.
    S. H. Park, A. Roy, S. Beaupre, S. Cho, N. Coates, J. S. Moon, D. Moses, M. Leclerc, K. Lee, and A. J. Heeger, Nat. Photon. 3, 297 (2009).ADSCrossRefGoogle Scholar
  11. 11.
    A. Kahn, N. Koch, and W. J. Gao, J. Polym. Sci. B 41, 2529 (2003).CrossRefGoogle Scholar
  12. 12.
    S. R. Forrest, Nature (London, U.K.) 428, 911 (2004).ADSCrossRefGoogle Scholar
  13. 13.
    H. Hoppe and N. S. Sariciftci, J. Mater. Res. 19, 1924 (2004).ADSCrossRefGoogle Scholar
  14. 14.
    M. Jaiswal and R. Menon, Polym. Int. 55, 1371 (2006).CrossRefGoogle Scholar
  15. 15.
    L. M. Chen, Z. Hong, G. Li, and Y. Yang, Adv. Mater. 21, 1434 (2009).CrossRefGoogle Scholar
  16. 16.
    P. Sullivan, A. Daraud, I. Hancox, N. Beaumont, G. Mirri, J. H. R. Tucker, R. A. Hatton, M. Shipma, and T. S. Jones, Adv. Energy Mater. 7, 352 (2011).CrossRefGoogle Scholar
  17. 17.
    C. W. Schlenker, V. S. Barlier, S. W. Chin, M. T. Whited, R. E. McAnally, S. R. Forrest, and M. E. Thompson, Chem. Mater. 23, 4132 (2011).CrossRefGoogle Scholar
  18. 18.
    K. Cnops, B. P. Rand, D. Cheyns, and P. Heremans, Appl. Phys. Lett. 101, 143301 (2012).ADSCrossRefGoogle Scholar
  19. 19.
    Y. Shinmura, M. Kubo, N. Ishiyama, T. Kaji, and M. Hiramoto, AIP Adv. 2, 032145 (2012).ADSCrossRefGoogle Scholar
  20. 20.
    J. You, L. Dou, Z. Hong, G. Li, and Y. Yang, Prog. Polym. Sci. 38, 1909 (2013).CrossRefGoogle Scholar
  21. 21.
    H. Gommans, S. Schols, A. Kadashchuk, P. Heremans, and S. C. J. Meskers, J. Phys. Chem. C 113, 2974 (2009).CrossRefGoogle Scholar
  22. 22.
    R. R. Lunt, N. C. Giebnik, A. A. Belak, J. B. Benziger, and S. R. Forrest, J. Appl. Phys. 105, 053711 (2009).ADSCrossRefGoogle Scholar
  23. 23.
    W. A. Luhman and R. J. Holmes, Adv. Funct. Mater. 21, 764 (2011).CrossRefGoogle Scholar
  24. 24.
    Y. H. Chen, L. H. Lin, C. W. Lu, F. Lin, Z. Y. Huang, H. W. Lin, P. H. Wang, Y. H. Liu, K. T. Wong, J. Wen, D. J. Miller, and S. B. Darling, J. Am. Chem. Soc. 134, 13616 (2012).CrossRefGoogle Scholar
  25. 25.
    J. H. Huang, M. Velusamy, K. C. Ho, J. T. Lin, and C. W. Chu, J. Mater. Chem. 20, 2820 (2010).CrossRefGoogle Scholar
  26. 26.
    M. C. Chen, D. J. Liaw, Y. C. Huang, H. Y. Wu, and Y. Tai, Sol. Energy Mater. Sol. Cells 95, 2621 (2011).CrossRefGoogle Scholar
  27. 27.
    G. Dennler, H. J. Prall, R. Koeppe, M. Egginger, R. Autengruber, and N. S. Sariciftci, Appl. Phys. Lett. 89, 073502 (2006).ADSCrossRefGoogle Scholar
  28. 28.
    D. Cheyns, B. P. Rand, and P. Heremans, Appl. Phys. Lett. 97, 033301 (2010).ADSCrossRefGoogle Scholar
  29. 29.
    L. Dou, J. You, J. Yang, C. C. Chen, Y. He, S. Murase, T. Moriarty, K. Emery, G. Li, and Y. Yang, Nat. Photon. 6, 180 (2012).ADSCrossRefGoogle Scholar
  30. 30.
    C. F. Lin, S. W. Liu, C. C. Lee, J. C. Hunag, W. C. Su, T. L. Chiu, C. T. Chen, and J. H. Lee, Sol. Energy Mater. Sol. Cells 103, 69 (2012).CrossRefGoogle Scholar
  31. 31.
    Y. Liang, Z. Xu, J. Xia, S. T. Tsai, Y. Wu, G. Li, C. Ray, and Y. Yu, Adv. Mater. 22, E135 (2010).Google Scholar
  32. 32.
    M. Kubo, T. Kaji, and M. Hiramoto, AIP Adv. 1, 032177 (2011).ADSCrossRefGoogle Scholar
  33. 33.
    V. A. Benderskii and E. I. Kats, JETP Lett. 101, 17 (2015).ADSCrossRefGoogle Scholar
  34. 34.
    V. M. Agranovich, Theory of Excitons (Nauka, Moscow, 1968) [in Russian].Google Scholar
  35. 35.
    V. M. Agranovich and M. D. Galanin, Electronic Excitation Energy Transfer in Condensed Matter (North-Holland, Amsterdam, 1982).Google Scholar
  36. 36.
    G. D. Scholes, Ann. Rev. Phys. Chem. 54, 53 (2003).ADSCrossRefGoogle Scholar
  37. 37.
    R. E. Merrifield, J. Chem. Phys. 34, 1835 (1961).ADSCrossRefGoogle Scholar
  38. 38.
    V. A. Benderskii, L. A. Blyumenfel’d, and D. A. Popov, Zh. Strukt. Khim. 7, 370 (1966).Google Scholar
  39. 39.
    K. M. Coakley and M. D. McGehee, Chem. Mater. 16, 4533 (2004).CrossRefGoogle Scholar
  40. 40.
    S. Yang, P. Olishevski, and M. Kertesz, Synth. Met. 141, 171 (2004).CrossRefGoogle Scholar
  41. 41.
    Y. Kim, S. Cook, S. M. Tuladhar, S. A. Choulis, J. Nelson, J. R. Durrant, D. D. Bradley, M. Giles, I. McCulloch, C. S. Ha, and M. Ree, Nat. Mater. 55, 197 (2006).ADSCrossRefGoogle Scholar
  42. 42.
    J. Peet, J. Y. Kim, N. E. Coates, W. L. Ma, D. Moses, A. J. Heeger, and G. C. Bazan, Nat. Mater. 6, 497 (2007).ADSCrossRefGoogle Scholar
  43. 43.
    W. Y. Wong, X. Z. Wang, Z. He, A. B. Djuri, C. T. Yip, K. T. Cheung, H. Wang, C. S. K. Mak, and W. K. Chan, Nat. Mater. 6, 521 (2007).ADSCrossRefGoogle Scholar
  44. 44.
    C. P. Chen, S. H. Chan, T. C. Chao, C. Ting, and B. T. Ko, J. Am. Chem. Soc. 130, 12828 (2008).CrossRefGoogle Scholar
  45. 45.
    V. A. Benderskii, A. S. Kotkin, I. V. Rubtsov, and E. I. Kats, JETP Lett. 98, 219 (2013).ADSCrossRefGoogle Scholar
  46. 46.
    V. A. Benderskii and E. I. Kats, J. Exp. Theor. Phys. 116, 1 (2013).ADSCrossRefGoogle Scholar
  47. 47.
    L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 3: Quantum Mechanics: Non-Relativistic Theory (Nauka, Moscow, 1989, 4th ed.; Pergamon, New York, 1977, 3rd ed.).Google Scholar
  48. 48.
    C. Herring, Rev. Mod. Phys. 34, 341 (1962).MathSciNetCrossRefGoogle Scholar
  49. 49.
    V. A. Benderskii and E. V. Vetoshkin, Chem. Phys. 257, 203 (2000).CrossRefGoogle Scholar
  50. 50.
    V. A. Benderskii, D. E. Makarov, and C. A. Wight, Chemical Dynamics at Low Temperatures (Wiley, New York, 1994).CrossRefGoogle Scholar
  51. 51.
    N. F. Mott and E. A. Davis, Electronic Processes in Non-Crystalline Materials (Clarendon, Oxford, 1971).Google Scholar
  52. 52.
    M. B. Johnston, I. M. Herz, A. L. T. Khan, A. Kohler, A. G. Davies, and E. H. Linfield, Chem. Phys. Lett. 377, 256 (2003).ADSCrossRefGoogle Scholar
  53. 53.
    U. Kleinekaththofer and U. Schulten, Phys. Rev. E 65, 031919 (2002).ADSCrossRefGoogle Scholar
  54. 54.
    E. Hennebicq, G. Portois, G. D. Scholes, L. M. Herz, D. M. Russell, C. S. C. Setayesh, A. C. Grimsdale, K. Mullen, J. L. Bredas, and D. Beljonne, J. Am. Chem. Soc. 127, 4744 (2005).CrossRefGoogle Scholar
  55. 55.
    N. Beamont, S. W. Cho, P. Sullivan, D. Newby, K. E. Smith, and T. S. Jones, Adv. Funct. Mater. 22, 561 (2012).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  1. 1.Institute for Problems of Chemical PhysicsRussian Academy of SciencesChernogolovka, Moscow oblastRussia
  2. 2.Landau Institute for Theoretical PhysicsRussian Academy of SciencesChernogolovka, Moscow oblastRussia

Personalised recommendations