Advertisement

Dynamics of Gold Ablation into Water

  • N. A. Inogamov
  • V. V. Zhakhovskii
  • V. A. Khokhlov
Solids And Liquids
  • 25 Downloads

Abstract

Using the gold–water pair as an example, we analyze the problems related to an ultrashort laser action on a metallic target submerged in a transparent liquid.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C.-K. Sun, F. Vallee, L. H. Acioli, E. P. Ippen, and J. G. Fujimoto, Phys. Rev. 50, 15337 (1994).CrossRefGoogle Scholar
  2. 2.
    X. Y. Wang, D. M. Riffe, Y. S. Lee, and M. C. Downer, Phys. Rev. 50, 8016 (1994).ADSCrossRefGoogle Scholar
  3. 3.
    J. Hohlfeld, S.-S. Wellershoff, J. Guedde, U. Conrad, V. Jaehnke, and E. Matthias, Chem. Phys. 251, 237 (2000).CrossRefGoogle Scholar
  4. 4.
    D. Strickland and G. Mourou, Opt. Commun. 55, 447 (1985).ADSCrossRefGoogle Scholar
  5. 5.
    M. Pessot, P. Maine, and G. Mourou, Opt. Commun. 62, 419 (1987).ADSCrossRefGoogle Scholar
  6. 6.
    K. Phillips, H. Gandhi, E. Mazur, and S. Sundaram, Adv. Opt. Photon. 7, 684 (2015).CrossRefGoogle Scholar
  7. 7.
    M. C. Downer, R. L. Fork, and C. V. Shank, J. Opt. Soc. Am. B 4, 595 (1985).ADSCrossRefGoogle Scholar
  8. 8.
    V. V. Temnov, K. Sokolowski-Tinten, P. Zhou, and D. von der Linde, J. Opt. Soc. Am. B 23, 1954 (2006).ADSCrossRefGoogle Scholar
  9. 9.
    S. I. Anisimov, B. L. Kapeliovich, and T. L. Perel’man, Sov. Phys. JET. 39, 375 (1974)].ADSGoogle Scholar
  10. 10.
    N. A. Inogamov, V. V. Zhakhovskii, S. I. Ashitkov, V. A. Khokhlov, V. V. Shepelev, P. S. Komarov, A. V. Ovchinnikov, D. S. Sitnikov, Yu. V. Petrov, M. B. Agranat, S. I. Anisimov, and V. E. Fortov, Contrib. Plasma Phys. 51, 367 (2011).ADSCrossRefGoogle Scholar
  11. 11.
    K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, et al., Phys. Rev. Lett. 81, 224 (1998).ADSCrossRefGoogle Scholar
  12. 12.
    N. A. Inogamov, A. M. Oparin, Yu. V. Petrov, N. V. Shaposhnikov, S. I. Anisimov, D. von der Linde, and J. Meyer-ter-Vehn, JETP Lett. 69, 310 (1999).ADSCrossRefGoogle Scholar
  13. 13.
    V. V. Zhakhovskii, K. Nishikhara, S. I. Anisimov, and N. A. Inogamov, JETP Lett. 71, 167 (2000).ADSCrossRefGoogle Scholar
  14. 14.
    L. V. Zhigilei and B. J. Garrison, J. Appl. Phys. 88, 1281 (2000).ADSCrossRefGoogle Scholar
  15. 15.
    B. J. Demaske, V. V. Zhakhovsky, N. A. Inogamov, and I. I. Oleynik, Phys. Rev. 82, 064113 (2010).CrossRefGoogle Scholar
  16. 16.
    D. S. Ivanov and L. V. Zhigilei, Phys. Rev. 68, 064114 (2003).CrossRefGoogle Scholar
  17. 17.
    M. Gill-Comeau and L. J. Lewis, Phys. Rev. 84, 224110 (2011).CrossRefGoogle Scholar
  18. 18.
    Yu. V. Petrov, N. A. Inogamov, and K. P. Migdal, JETP Lett. 97, 20 (2013).ADSCrossRefGoogle Scholar
  19. 19.
    Yu. V. Petrov, K. P. Migdal, N. A. Inogamov, and S. I. Anisimov, JETP Lett. 104, 431 (2016).ADSCrossRefGoogle Scholar
  20. 20.
    P. Lorazo, L. J. Lewis, and M. Meunier, Phys. Rev. 73, 134108 (2006).CrossRefGoogle Scholar
  21. 21.
    C. Wu, M. S. Christensen, J.-M. Savolainen, P. Balling, and L. V. Zhigilei, Phys. Rev. 91, 035413 (2015).CrossRefGoogle Scholar
  22. 22.
    P. N. Mayer and A. E. Mayer, J. Appl. Phys. 120, 075901 (2016).ADSCrossRefGoogle Scholar
  23. 23.
    E. T. Karim, M. V. Shugaev, Chengping Wu, Zhibin Lin, H. Matsumoto, M. Conneran, J. Kleinert, R. F. Hainsey, and L. V. Zhigilei, Appl. Phys. 122, 407 (2016).CrossRefGoogle Scholar
  24. 24.
    Chengping Wu and L. V. Zhigilei, J. Phys. Chem. C 120, 4438 (2016).CrossRefGoogle Scholar
  25. 25.
    V. V. Zhakhovskii, N. A. Inogamov, and K. Nishihara, JETP Lett. 87, 423 (2008).ADSCrossRefGoogle Scholar
  26. 26.
    V. Zhakhovskii, N. Inogamov, and K. Nishihara, J. Phys.: Conf. Ser. 112, 042080 (2008).Google Scholar
  27. 27.
    N. A. Inogamov, V. V. Zhakhovskii, S. I. Ashitkov, Yu. V. Petrov, M. B. Agranat, S. I. Anisimov, K. Nishikhara, and V. E. Fortov, J. Exp. Theor. Phys. 107, 1 (2008).ADSCrossRefGoogle Scholar
  28. 28.
    N. A. Inogamov, V. V. Zhakhovsky, V. A. Khokhlov, S. I. Ashitkov, Yu. N. Emirov, K. V. Khichshenko, A. Ya. Faenov, T. A. Pikuz, M. Ishino, M. Kando, N. Hasegawa, M. Nishikino, P. S. Komarov, B. J. Demaske, M. B. Agranat, et al., J. Phys.: Conf. Ser. 510, 012041 (2014).Google Scholar
  29. 29.
    N. A. Inogamov, V. V. Zhakhovsky, S. I. Ashitkov, Yu. N. Emirov, A. Ya. Faenov, T. A. Pikuz, M. Ishino, M. Kando, N. Hasegawa, M. Nishikino, T. Kawachi, M. B. Agranat, A. V. Andriash, S. E. Kuratov, and I. I. Oleynik, J. Phys.: Conf. Ser. 500, 112070 (2014).Google Scholar
  30. 30.
    N. A. Inogamov, V. V. Zhakhovsky, N. Hasegawa, M. Nishikino, M. Yamagiwa, M. Ishino, M. B. Agranat, S. I. Ashitkov, A. Ya. Faenov, V. A. Khokhlov, D. K. Ilnitsky, Yu. V. Petrov, K. P. Migdal, T. A. Pikuz, S. Takayoshi, et al., Appl. Phys. 119, 413 (2015).CrossRefGoogle Scholar
  31. 31.
    N. A. Inogamov, V. V. Zhakhovsky, and V. A. Khokhlov, in Proceedings of the Progress in Electromagnetics Research Symposium PIERS, Prague, Czech Republic, July 6-–9, 2015, p. 2413.Google Scholar
  32. 32.
    S. I. Ashitkov, S. A. Romashevskii, P. S. Komarov, A. A. Burmistrov, V. V. Zhakhovsky, N. A. Inogamov, and M. B. Agranat, Quantum Electron. 45, 547 (2015).ADSCrossRefGoogle Scholar
  33. 33.
    A. Y. Vorobyev and Chunlei Guo, Opt. Expres. 14, 2164 (2006).ADSCrossRefGoogle Scholar
  34. 34.
    A. A. Ionin, S. I. Kudryashov, S. V. Makarov, A. O. Levchenko, A. A. Rudenko, I. N. Saraeva, D. A. Zayarny, Ch. R. Nature ala, and W. Husinsky, Laser Phys. Lett. 13, 025603 (2016).ADSCrossRefGoogle Scholar
  35. 35.
    M. B. Agranat, S. I. Anisimov, S. I. Ashitkov, V. V. Zhakhovskii, N. A. Inogamov, K. Nishihara, A. M. Oparin, Yu. V. Petrov, V. E. Fortov, and V. A. Khokhlov, Appl. Surf. Sci. 253, 6276 (2007).ADSCrossRefGoogle Scholar
  36. 36.
    S. I. Anisimov, V. V. Zhakhovskii, N. A. Inogamov, K. Nishikhara, Yu. V. Petrov, and V. A. Khokhlov, J. Exp. Theor. Phys. 103, 183 (2006).ADSCrossRefGoogle Scholar
  37. 37.
    S. G. Bezhanov, A. P. Kanavin, and S. A. Uryupin, Quantum Electron. 46, 119 (2016).ADSCrossRefGoogle Scholar
  38. 38.
    N. R. Sibgatullin, Oscillations and Waves in Strong Gravitation and Electromagnetic Fields (Nauka, Moscow, 1984).zbMATHGoogle Scholar
  39. 39.
    J. Arons and S. M. Lea, Astrophys. J. 207, 914 (1976).ADSCrossRefGoogle Scholar
  40. 40.
    N. A. Inogamov and R. A. Sunyaev, Astron. Lett. 25, 269 (1999); Astron. Lett. 36, 835 (2010).ADSGoogle Scholar
  41. 41.
    N. A. Inogamov, A. Yu. Dem’yanov, and E. E. Son, Hydrodynamics of Mixing: Periodic Structures, Amplification of Subharmonics, Inversion Cascade (Mosk. Fiz. Tekh. Inst., Moscow, 1999) [in Russian].Google Scholar
  42. 42.
    N. A. Inogamov, Astrophys. Space Phys. Rev. 10, 1 (1999).ADSCrossRefGoogle Scholar
  43. 43.
    F. Fraschetti, R. Teyssier, J. Ballet, and A. Decourchelle, Astron. Astrophys. 515, A104 (2010).Google Scholar
  44. 44.
    S. I. Anisimov, Y. B. Zeldovich, N. A. Inogamov, and M. F. Ivanov, Progr. Astronaut. Aeronaut. 87, 218 (1983).ADSGoogle Scholar
  45. 45.
    K. Balakrishnan, F. Genin, D. V. Nance, and S. Menon, Shock Wave. 20, 147 (2010).ADSCrossRefGoogle Scholar
  46. 46.
    A. V. Bushman, V. E. Fortov, G. I. Kanel, and A. L. Ni, Intense Dynamic Loading of Condensed Matter (Taylor and Francis, London, New York, 1993).Google Scholar
  47. 47.
    K. V. Khishchenko, S. I. Tkachenko, P. R. Levashov, I. V. Lomonosov, and V. S. Vorobev, Int. J. Thermophys. 23, 1359 (2002).CrossRefGoogle Scholar
  48. 48.
  49. 49.
  50. 50.
    S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability (Oxford Univ. Press, London, 1968).zbMATHGoogle Scholar
  51. 51.
    K. O. Mikaelian, Phys. Rev. 54, 3676 (1996).ADSMathSciNetCrossRefGoogle Scholar
  52. 52.
    G. E. Norman, S. V. Starikov, and V. V. Stegailov, J. Exp. Theor. Phys. 114, 792 (2012).ADSCrossRefGoogle Scholar
  53. 53.
    N. A. Inogamov, S. I. Anisimov, and B. Retfel’d, J. Exp. Theor. Phys. 88, 1143 (1999).ADSCrossRefGoogle Scholar
  54. 54.
    S. I. Anisimov, N. A. Inogamov, and A. M. Oparin, Izv. Akad. Nauk, Ser. Mekh. Zhidk. Gaz. 34 (6), 149 (1999).Google Scholar
  55. 55.
    S. I. Anisimov, N. A. Inogamov, A. M. Oparin, B. Rethfeld, T. Yabe, M. Ogawa, and V. E. Fortov, Appl. Phys. 69, 617 (1999).CrossRefGoogle Scholar
  56. 56.
    B. Chimier and V. T. Tikhonchuk, Phys. Rev. 79, 184107 (2009).ADSCrossRefGoogle Scholar
  57. 57.
    R. I. Nigmatulin and R. Kh. Bolotnova, High Temp. 49, 303 (2011).CrossRefGoogle Scholar
  58. 58.
    V. V. Zhakhovskii, N. A. Inogamov, Yu. V. Petrov, S. I. Ashitkov, and K. Nishihara, Appl. Surf. Sci. 255, 9592 (2009).ADSCrossRefGoogle Scholar
  59. 59.
    M. E. Povarnitsyn, V. B. Fokin, and P. R. Levashov, Appl. Surf. Sci. 357, 1150 (2015).ADSCrossRefGoogle Scholar
  60. 60.
    B. J. Demaske, V. V. Zhakhovsky, N. A. Inogamov, and I. I. Oleynik, Phys. Rev. 87, 054109 (2013).CrossRefGoogle Scholar
  61. 61.
    M. E. Povarnitsyn, T. E. Itina, P. R. Levashov, and K. V. Khishchenko, Phys. Chem. Chem. Phys. 15, 3108 (2013).CrossRefGoogle Scholar
  62. 62.
    M. E. Povarnitsyn and T. E. Itina, Appl. Phys. 117, 175 (2014).CrossRefGoogle Scholar
  63. 63.
    T. E. Itina, J. Phys. Chem. C 115, 5044 (2011).CrossRefGoogle Scholar
  64. 64.
    Cheng-Yu Shih, Chengping Wu, M. V. Shugaev, and L. V. Zhigilei, J. Colloid Interface Sci. 489, 3 (2017).ADSCrossRefGoogle Scholar
  65. 65.
    N. A. Inogamov, Yu. V. Petrov, V. V. Zhakhovsky, V. A. Khokhlov, B. J. Demaske, S. I. Ashitkov, K. V. Khishchenko, K. P. Migdal, M. B. Agranat, S. I. Anisimov, V. E. Fortov, and I. I. Oleynik, AIP Conf. Proc. 1464, 593 (2012).ADSCrossRefGoogle Scholar
  66. 66.
    M. E. Povarnitsyn, T. E. Itina, M. Sentis, P. R. Levashov, and K. V. Khishchenko, Phys. Rev. 75, 235414 (2007).CrossRefGoogle Scholar
  67. 67.
    Yu. Petrov, K. Migdal, N. Inogamov, and V. Zhakhovsky, Appl. Phys. 119, 401 (2015).CrossRefGoogle Scholar
  68. 68.
    Yu. V. Petrov and N. A. Inogamov, JETP Lett. 98, 278 (2013).ADSCrossRefGoogle Scholar
  69. 69.
    K. P. Migdal, Yu. V. Petrov, and N. A. Inogamov, Proc. SPI. 9065, 906503 (2013).CrossRefGoogle Scholar
  70. 70.
    K. Migdal, Yu. Petrov, D. Il’nitsky, V. Zhakhovsky, N. Inogamov, K. Khishchenko, D. Knyazev, and P. Levashov, Appl. Phys. 122, 408 (2016).CrossRefGoogle Scholar
  71. 71.
    D. K. Ilnitsky, V. A. Khokhlov, V. V. Zhakhovsky, Yu. V. Petrov, K. P. Migdal, and N. A. Inogamov, J. Phys.: Conf. Ser. 774, 012101 (2016).Google Scholar
  72. 72.
    Zh. Lin, L. V. Zhigilei, and V. Celli, Phys. Rev. 77, 075133 (2008).CrossRefGoogle Scholar
  73. 73.
    A. Ng, Int. J. Quantum Chem. 112, 150 (2012).CrossRefGoogle Scholar
  74. 74.
    N. A. Inogamov, V. V. Zhakhovskii, S. I. Ashitkov, V. A. Khokhlov, Yu. V. Petrov, P. S. Komarov, M. B. Agranat, S. I. Anisimov, and K. Nishihara, Appl. Surf. Sci. 255, 9712 (2009).ADSCrossRefGoogle Scholar
  75. 75.
    L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 6: Fluid Mechanics (Nauka, Moscow, 1986; Pergamon, New York, 1987).Google Scholar
  76. 76.
    E. B. Webb III and G. S. Grest, Phys. Rev. Lett. 86, 2066 (2001).ADSCrossRefGoogle Scholar
  77. 77.
    S. I. Anisimov, D. O. Dunikov, V. V. Zhakhovskii, and S. P. Malyshenko, J. Chem. Phys. 110, 8722 (1999).ADSCrossRefGoogle Scholar
  78. 78.
    V. K. Semenchenko, Surface Phenomena in Metals and Alloys (Pergamon, ew York, 1961).Google Scholar
  79. 79.
    N. A. Inogamov, V. V. Zhakhovskii, and V. A. Khokhlov, J. Exp. Theor. Phys. 120, 15 (2015).ADSCrossRefGoogle Scholar
  80. 80.
    N. A. Inogamov, A. M. Oparin, A. Yu. Dem’yanov, L. N. Dembitski, and V. A. Khokhlov, J. Exp. Theor. Phys. 92, 715 (2001).ADSCrossRefGoogle Scholar
  81. 81.
    N. A. Inogamov and A. M. Oparin, J. Exp. Theor. Phys. 89, 481 (1999).ADSCrossRefGoogle Scholar
  82. 82.
    V. Zhakhovskii, K. Nishihara, Y. Fukuda, S. Shimojo, T. Akiyama, S. Miyanaga, H. Sone, H. Kobayashi, E. Ito, Y. Seo, M. Tamura, and Y. Ueshima, in IEEE Proceedings of the 5th International Symposium on Cluster Computing and Grid CCGrid 2005, May 9–12, 2005, Cardiff, UK (2005), Vol. 2, p. 848.CrossRefGoogle Scholar
  83. 83.
    G. Dimonte, D. L. Youngs, A. Dimits, S. Weber, M. Marinak, S. Wunsch, C. Garasi, A. Robinson, M. J. Andrews, P. Ramaprabhu, A. C. Calder, B. Fryxell, J. Biello, L. Dursi, P. MacNeice, K. Olson, P. Ricker, R. Rosner, F. Timmes, H. Tufo, Y.-N. Young, and M. Zingale, Phys. Fluid. 16, 1668 (2004).ADSCrossRefGoogle Scholar
  84. 84.
    S. I. Ashitkov, N. A. Inogamov, V. V. Zhakhovskii, Yu. N. Emirov, M. B. Agranat, I. I. Oleinik, S. I. Anisimov, and V. E. Fortov, JETP Lett. 95, 176 (2012).ADSCrossRefGoogle Scholar
  85. 85.
    N. A. Inogamov, V. V. Zhakhovsky, V. A. Khokhlov, Yu. V. Petrov, and K. P. Migdal, Nanoscale Res. Lett. 11, 177 (2016).ADSCrossRefGoogle Scholar
  86. 86.
    P. A. Danilov, D. A. Zayarny, A. A. Ionin, S. I. Kudryashov, A. A. Rudenko, A. A. Kuchmizhak, O. B. Vitrik, Yu. N. Kulchin, V. V. Zhakhovsky, and N. A. Inogamov, JETP Lett. 104, 759 (2016).ADSCrossRefGoogle Scholar
  87. 87.
    D. Ofte, J. Nucl. Mater. 22, 28 (1967).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • N. A. Inogamov
    • 1
    • 2
  • V. V. Zhakhovskii
    • 1
    • 2
  • V. A. Khokhlov
    • 1
  1. 1.Landau Institute for Theoretical PhysicsRussian Academy of SciencesChernogolovkaRussia
  2. 2.Dukhov Research Institute of AutomaticsMoscowRussia

Personalised recommendations