Skip to main content
Log in

Magnetic Dichroism in the Reflectivity of Linearly Polarized Synchrotron Radiation from a Ti(10 nm)/Gd0.23Co0.77(250 nm)/Ti(10 nm) Sample

  • Order, Disorder, and Phase Transition in Condensed System
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The dichroic effect (“rotated” polarization) in the reflectivity from a magnetically ordered sample is experimentally studied at the station PHASE of the Kurchatov Synchrotron Radiation Source. The experiments are performed for the Gd0.23Co0.77 film, which has a compensation temperature Tcomp ≈ 433 K, using linearly polarized radiation of the photon energy of 7930 eV (L2 absorption edge of gadolinium) at room temperature. The developed theory of reflectivity accounted for the magnetic contributions to the scattering amplitude predicts the appearance of a peak for the orthogonal (to the incident polarization) polarization of the reflected radiation near the critical angle of the total external reflection. The experiment reveals the significant difficulties because of the incomplete σ polarization of the synchrotron beam, the beam instability, and so on. Therefore, a rotated-polarization peak has been detected near the critical angle but at the limits of the measurement accuracy. In principle, our experimental technique could be an alternative to circular polarization experiments, which are widely used at synchrotrons to study magnetic ordering. However, as we have shown, it makes high demands of the radiation source parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S. G. Ovchinnikov, Phys. Usp. 42, 779 (1999).

    Article  ADS  Google Scholar 

  2. J. B. Kortright, D. D. Awschalom, J. Stöhr, et al., J. Magn. Magn. Mater. 207, 7 (1999).

    Article  ADS  Google Scholar 

  3. G. van der Laan, J. Phys.: Conf. Ser. 430, 012127 (2013).

    Google Scholar 

  4. C. Sorg, A. Scherz, K. Baberschke, et al., Phys. Rev. B 75, 064428 (2007).

    Article  ADS  Google Scholar 

  5. N. Ishimatsu, H. Hashizume, S. Hamada, et al., Phys. Rev. B 60, 9596 (1999).

    Article  ADS  Google Scholar 

  6. L. Séve, N. Jaouen, J. M. Tonnerre, et al., Phys. Rev. B 60, 9662 (1999).

    Article  ADS  Google Scholar 

  7. N. Jaouen, G. van der Laan, T. K. Johal, et al., Phys. Rev. B 70, 094417 (2004).

    Article  ADS  Google Scholar 

  8. F. de Bergevin and M. Brunel, Acta Crystallogr. A 37, 314 (1981).

    Article  ADS  Google Scholar 

  9. M. Blume and D. Gibbs, Phys. Rev. B 37, 1779 (1988).

    Article  ADS  Google Scholar 

  10. D. E. Moncton, D. Gibbs, and J. Bohr, Nucl. Instrum. Methods Phys. Res., Sect. A 246, 839 (1986).

    Article  ADS  Google Scholar 

  11. D. Gibbs, D. R. Harshman, E. D. Isaacs, et al., Phys. Rev. Lett. 61, 1241 (1988).

    Article  ADS  Google Scholar 

  12. J. Bohr, D. Gibbs, J. D. Axe, et al., Physica B 159, 93 (1989).

    Article  ADS  Google Scholar 

  13. D. B. McWhan, C. Vettier, E. D. Isaacs, et al., Phys. Rev. B 42, 6007 (1990).

    Article  ADS  Google Scholar 

  14. J. Bohr, J. Magn. Magn. Mater. 83, 530 (1990).

    Article  ADS  Google Scholar 

  15. S. Langridge, G. H. Lander, N. Bernhoeft, et al., Phys. Rev. B 55, 6392 (1997).

    Article  ADS  Google Scholar 

  16. V. Fernandez, C. Vettier, F. de Bergevin, et al., Phys. Rev. B 57, 7870 (1998).

    Article  ADS  Google Scholar 

  17. W. Neubeck, C. Vettier, V. Fernandez, et al., J. Appl. Phys. 85, 4847 (1999).

    Article  ADS  Google Scholar 

  18. R. Caciuffo, L. Paolasini, A. Sollier, et al., Phys. Rev. B 65, 174425 (2002).

    Article  ADS  Google Scholar 

  19. D. P. Siddons, M. Hart, Y. Amemiya, et al., Phys. Rev. Lett. 64, 1967 (1990).

    Article  ADS  Google Scholar 

  20. S. P. Collins, J. Phys.: Condens. Matter 11, 1159 (1999).

    ADS  Google Scholar 

  21. J. B. Kortright, M. Rice, and R. Carr, Phys. Rev. B 51, 10240 (1995).

    Article  ADS  Google Scholar 

  22. J. B. Kortright, M. Rice, S.-K. Kim, et al., J. Magn. Magn. Mater. 191, 79 (1999).

    Article  ADS  Google Scholar 

  23. H.-Ch. Mertins, F. Schäfers, A. Gaupp, et al., Phys. Rev. B 61, R874 (2000).

    Article  ADS  Google Scholar 

  24. J. B. Kortright and Sang-Koog Kim, Phys. Rev. B 62, 12 (216) (2000).

    Article  Google Scholar 

  25. H.-Ch. Mertins, P. M. Oppeneer, J. Kuneš, et al., Phys. Rev. Lett. 87, 047401 (2001).

    Article  ADS  Google Scholar 

  26. D. P. Siddons, J. B. Hastings, G. Faigel, et al., Phys. Rev. Lett. 62, 1384 (1989).

    Article  ADS  Google Scholar 

  27. T. S. Toellner, E. E. Alp, W. Sturhahn, et al., Appl. Phys. Lett. 67, 1993 (1995).

    Article  ADS  Google Scholar 

  28. D. P. Siddons, U. Bergmann, and J. B. Hastings, Phys. Rev. Lett. 70, 359 (1993).

    Article  ADS  Google Scholar 

  29. D. P. Siddons, U. Bergmann, and J. B. Hastings, Hyperfine Interact. 123/124, 681 (1999).

    Article  Google Scholar 

  30. J. P. Hannon, G. T. Trammell, M. Blume, et al., Phys. Rev. Lett. 61, 1245 (1988).

    Article  ADS  Google Scholar 

  31. S. A. Stepanov and S. K. Sinha, Phys. Rev. B 61, 15302 (2000).

    Article  ADS  Google Scholar 

  32. R. Azzam and N. Bashara, Ellipsometry and Polarized Light (North-Holland, Amsterdam, 1977; Mir, Moscow, 1981).

    Google Scholar 

  33. G. N. Borzdov, L. M. Barkovskii, and V. I. Lavrukovich, Zh. Prikl. Spektrosc. 25, 526 (1976).

    Google Scholar 

  34. M. A. Andreeva and A. G. Smekhova, Appl. Surf. Sci. 252, 5619 (2006).

    Article  ADS  Google Scholar 

  35. E. E. Odintsova and M. A. Andreeva, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 4, 913 (2010).

    Article  Google Scholar 

  36. M. A. Andreeva and Y. L. Repchenko, Crystallogr. Rep. 58, 1037 (2013).

    Article  ADS  Google Scholar 

  37. M. A. Andreeva and Yu. L. Repchenko, https://doi.org/kftt.phys.msu.ru/index.php?id=47.

  38. Y. Choi, D. Haskel, R. E. Camley, et al., Phys. Rev. B 70, 134420 (2004).

    Article  ADS  Google Scholar 

  39. https://doi.org/henke.lbl.gov/optical_constants/getdb2.html.

  40. B. L. Henke, Phys. Rev. A 6, 94 (1972).

    Article  ADS  Google Scholar 

  41. G. M. Bedzyk, J. S. Bommarito, and J. S. Schildkraut, Phys. Rev. Lett. 62, 1376 (1989).

    Article  ADS  Google Scholar 

  42. M. V. Koval’chuk, N. N. Novikova, and S. N. Yakunin, Priroda, No. 12, 3 (2012).

    Google Scholar 

  43. M. A. Andreeva and B. Lindgren, JETP Lett. 76, 704 (2002).

    Article  ADS  Google Scholar 

  44. M. A. Andreeva and B. Lindgren, Phys. Rev. B 72, 125422 (2005).

    Article  ADS  Google Scholar 

  45. L. G. Parratt, Phys. Rev. 95, 359 (1954).

    Article  ADS  Google Scholar 

  46. R. Hasegawa, R. J. Gambino, and R. Ruf, Appl. Phys. Lett. 27, 512 (1975).

    Article  ADS  Google Scholar 

  47. R. C. Taylor and A. Gangulee, J. Appl. Phys. 47, 4666 (1976).

    Article  ADS  Google Scholar 

  48. N. Kawamura, M. Suzuki, H. Maruyama, et al., J. Synchrotr. Rad. 8, 425 (2001).

    Article  Google Scholar 

  49. E. Meltchakov, H.-Ch. Mertins, M. Scheer, et al., J. Magn. Magn. Mater. 240, 550 (2002).

    Article  ADS  Google Scholar 

  50. M. V. Ryabukhina, E. A. Kravtsov, D. V. Blagodatkov, L. I. Naumova, Yu. V. Nikitenko, V. V. Proglyado, and Yu. N. Khaydukov, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 9, 41 (2015).

    Article  Google Scholar 

  51. A. V. Svalov, G. V. Kurlyandskaya, K. G. Balymov, and V. O. Vas’kovskii, Phys. Met. Metallogr. 117, 876 (2016).

    Article  ADS  Google Scholar 

  52. A. V. Svalov, G. V. Kurlyandskaya, and V. O. Vas’kovskiy, Appl. Phys. Lett. 108, 063504 (2016).

    Article  ADS  Google Scholar 

  53. J. C. T. Lee, J. Chess, S. A. Montoya, et al., arXiv:1603.07882v1.

  54. M. A. Andreeva, R. A. Baulin, M. M. Borisov, et al., in Proceedings of the Conference on X-Ray Optics, Chernogolovka, Moscow Region, Sept. 26–29, 2016, p. 6.

    Google Scholar 

  55. M. A. Andreeva, R. A. Baulin, A. I. Chumakov, et al., in Proceedings of the International Conference on the Applications ofthe Mössbauer Effect ICAME 2017, St.-Petersburg, Sept. 3–8, 2017, p. 37.

    Google Scholar 

  56. M. A. Andreeva, R. A. Baulin, A. I. Chumakov, and R. Rüffer, J. Appl. Phys. (2018, submitted).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Andreeva.

Additional information

Original Russian Text © M.A. Andreeva, R.A. Baulin, M.M. Borisov, E.A. Gan’shina, G.V. Kurlyandskaya, E.Kh. Mukhamedzhanov, Yu.L. Repchenko, A.V. Svalov, 2018, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2018, Vol. 153, No. 6, pp. 966–976.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andreeva, M.A., Baulin, R.A., Borisov, M.M. et al. Magnetic Dichroism in the Reflectivity of Linearly Polarized Synchrotron Radiation from a Ti(10 nm)/Gd0.23Co0.77(250 nm)/Ti(10 nm) Sample. J. Exp. Theor. Phys. 126, 802–810 (2018). https://doi.org/10.1134/S1063776118050102

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776118050102

Navigation