Anode Plasma Formation at the Initial Stage of a Nanosecond Air Discharge
Statistical, Nonlinear, and Soft Matter Physics
First Online:
Received:
- 5 Downloads
Abstract
The initial stage of a nanosecond discharge in gaps with a high electric field at a cathode is studied by laser methods (interferometric, shadow, schlieren methods). The studies are performed in air at atmospheric pressure. Prominence is given to studying the evolution (appearance and growth) of the plasma channels at an anode and to estimating their parameters.
Preview
Unable to display preview. Download preview PDF.
References
- 1.A. V. Perminov and A. A. Tren’kin, Tech. Phys. 50, 1158 (2005).CrossRefGoogle Scholar
- 2.A. G. Rep’ev, P. B. Repin, and V. S. Pokrovski, Tech. Phys. 52, 52 (2007).CrossRefGoogle Scholar
- 3.Yu. D. Korolev and G. A. Mesyats, Physics of Pulsed Breakdown in Gases (Nauka, Moscow, 1991; Uro-Press, Yekateriburg, 1998).Google Scholar
- 4.Yu. D. Korolev, V. A. Kuz’min, G. A. Mesyats, and V. P. Rotshtein, Sov. Tech. Phys. 24, 236 (1979).Google Scholar
- 5.Yu. D. Korolev, V. A. Kuz’min, and G. A. Mesyats, Zh. Tekh. Fiz. 50, 4 (1980).Google Scholar
- 6.A. N. Zaidel’ and G. V. Ostrovskaya, Laser Methods of Plasma Research (Nauka, Leningrad, 1977) [in Russian].Google Scholar
- 7.E. V. Parkevich, S. I. Tkachenko, A. V. Agafonov, A. R. Mingaleev, V. M. Romanova, T. A. Shelkovenko, and S. A. Pikuz, J. Exp. Theor. Phys. 124, 531 (2017).ADSCrossRefGoogle Scholar
- 8.E. V. Parkevich, Instrum. Exp. Tech. 60, 383 (2017).CrossRefGoogle Scholar
- 9.S. M. Rytov, Yu. A. Kravtsov, and V. I. Tatarskii, Introduction to Statistical Radiophysics, Part 2 (Nauka, Moscow, 1978) [in Russian].MATHGoogle Scholar
- 10.A. I. Khirianova and S. I. Tkachenko, in Proceedings of the 60th Conference of Mosc. Phys. Tech. Inst. with International Participation, Nov. 20–25, 2017 (Dolgoprudnyi, 2017).Google Scholar
- 11.V. R. Kukhta, V. V. Lopatin, and P. G. Petrov, Opt. Spectrosc. 56, 1 (1984).Google Scholar
- 12.S. A. Pikuz, V. M. Romanova, N. V. Baryshnikov, Min Hu, B. R. Kusse, D. B. Sinars, T. A. Shelkovenko, and D. A. Hammer, Rev. Sci. Instrum. 72, 1098 (2001).ADSCrossRefGoogle Scholar
- 13.S. I. Tkachenko, A. R. Mingaleev, S. A. Pikuz, V.M. Romanova, T. A. Khattatov, T. A. Shelkovenko, O. G. Ol’khovskaya, V. A. Gasilov, and Yu. G. Kalinin, Plasma Phys. Rep. 38, 1 (2012).ADSCrossRefGoogle Scholar
- 14.V. P. Tarakanov, User’s Manual for Code KARAT (Bercley Research Assoc., Springfield, VA, 1992).Google Scholar
- 15.D. I. Proskurovskii, Emission Electronics, the School-Book for Higher School (Tomsk. Gos. Univ., Tomsk, 2010) [in Russian].Google Scholar
- 16.R. M. van der Horst, T. Verreycken, E. M. van Veldhuizen, and P. J. Bruggeman, J. Phys. D: Appl. Phys. 45, 34 (2012).Google Scholar
- 17.S. A. Shcherbanev, A. Yu. Khomenko, S. A. Stepanyan, N. A. Popov, and S. M. Starikovskaia, Plasma Sources Sci. Technol. 26, 2 (2016).CrossRefGoogle Scholar
- 18.A. Lo, A. Cessou, C. Lacour, B. Lecordier, P. Boubert, D. A. Xu, C. O. Laux, and P. Vervisch, Plasma Sources Sci. Technol. 26, 4 (2017).CrossRefGoogle Scholar
- 19.Yu. P. Raizer, Gas Discharge Physics (Springer, Berlin, 1991; Nauka, Moscow, 1992).CrossRefGoogle Scholar
- 20.Yu. D. Korolev, G. A. Mesyats, and A. P. Khuzeev, Dokl. Akad. Nauk SSSR 253, 3 (1980).Google Scholar
- 21.Physical Material Science, The School-Book for Higher School, in 6 Vols., Ed. by B. A. Kalin (Mosk. Inzh. Fiz. Inst., Moscow, 2007) [in Russian].Google Scholar
- 22.G. A. Vorob’ev, Yu. P. Pokholkov, Yu. D. Korolev, and V. I. Merkulov, Physics of Dielectrics (Strong Field Area) (Tomsk. Politekh. Univ., Tomsk, 2003) [in Russian].Google Scholar
Copyright information
© Pleiades Publishing, Inc. 2018