On the Effect of Small-Angle Scattering by Density Fluctuations on the Efficiency of Linear Transformation of Ordinary and Extraordinary Waves in a Toroidally Inhomogeneous Plasma

  • T. A. Khusainov
  • E. D. Gospodchikov
  • A. G. Shalashov
Atoms, Molecules, Optics
  • 2 Downloads

Abstract

We have analyzed the efficiency of tunneling of quasi-optical wave beams through the evanescent region in the vicinity of plasma cutoff in a randomly inhomogeneous magnetoactive plasma. A new theoretical model proposed here makes it possible to study the effect of a random phase modulation induced by density fluctuations in the wave beam path on the efficiency of the linear transformation of waves in the 2D geometry corresponding to the experimental conditions for heating the overdense plasma in toroidal magnetic systems. We have derived a general analytic expression connecting the wave beam coefficient of transformation averaged over the ensemble of random wave field realizations with its phase correlation function. We have analyzed the dependence of the coefficient of transformation on the correlation length for the random phase distribution in the beam and on the traversed path length to the interaction region. The threshold value of the path length above which the fluctuations produce a dominating effect has been determined. The importance of taking into account the 2D effects has been demonstrated.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Preinhaelter and V. Kopecký, J. Plasma Phys. 10, 1 (1973).ADSCrossRefGoogle Scholar
  2. 2.
    H. P. Laqua, V. Erckmann, H. J. Hartfuß, and H. Laqua, Phys. Rev. Lett. 78, 3467 (1997).ADSCrossRefGoogle Scholar
  3. 3.
    H. P. Laqua, Plasma Phys. Control. Fusion 49, R1 (2007).ADSCrossRefGoogle Scholar
  4. 4.
    A. G. Shalashov and E. D. Gospodchikov, Plasma Phys. Control. Fusion 56, 125011 (2014).ADSCrossRefGoogle Scholar
  5. 5.
    E. D. Gospodchikov, T. A. Khusainov, and A. G. Shalashov, Plasma Phys. Rep. 42, 723 (2016).ADSCrossRefGoogle Scholar
  6. 6.
    A. Yu. Popov, Plasma Phys. Control. Fusion 57, 025010 (2015).ADSCrossRefGoogle Scholar
  7. 7.
    E. V. Sysoeva, E. Z. Gusakov, and S. Heuraux, Plasma Phys. Control. Fusion 55, 115001 (2013).ADSCrossRefGoogle Scholar
  8. 8.
    H. Weitzner, Phys. Plasmas 11, 866 (2004).ADSCrossRefGoogle Scholar
  9. 9.
    E. D. Gospodchikov, A. G. Shalashov, and E. V. Suvorov, Plasma Phys. Control. Fusion 48, 869 (2006).ADSCrossRefGoogle Scholar
  10. 10.
    A. Yu. Popov and A. D. Piliya, Plasma Phys. Rep. 33, 109 (2007).ADSCrossRefGoogle Scholar
  11. 11.
    A. Yu. Popov, Plasma Phys. Control. Fusion 49, 1599 (2007).ADSCrossRefGoogle Scholar
  12. 12.
    A. G. Shalashov and E. D. Gospodchikov, Plasma Phys. Control. Fusion 52, 115001 (2010).ADSCrossRefGoogle Scholar
  13. 13.
    E. D. Gospodchikov, T. A. Khusainov, and A. G. Shalashov, Plasma Phys. Control. Fusion 54, 045009 (2012).ADSCrossRefGoogle Scholar
  14. 14.
    T. A. Khusainov, E. D. Gospodchikov, and A. G. Shalashov, Plasma Phys. Rep. 38, 83 (2012).ADSCrossRefGoogle Scholar
  15. 15.
    T. A. Khusainov, A. G. Shalashov, and E. D. Gospodchikov, https://www.researchgate.net/publication/321966325. doi 10.13140/RG.2.2.16649.95844 (2017).Google Scholar
  16. 16.
    E. V. Sysoeva et al., Nucl. Fusion 55, 033016 (2015).ADSCrossRefGoogle Scholar
  17. 17.
    E. Z. Gusakov et al., Plasma Phys. Control. Fusion 44, 1565 (2002).ADSCrossRefGoogle Scholar
  18. 18.
    V. Shevchenko, G. Cunningham, and A. Gurchenko, Fusion Sci. Technol. 52, 202 (2007).CrossRefGoogle Scholar
  19. 19.
    A. Bruschi, R. Bozzi, S. Cirant, et al., Fusion Eng. Des. 53, 431 (2001).CrossRefGoogle Scholar
  20. 20.
    E. Z. Gusakov, A. D. Gurchenko, A. B. Altukhov, et al., Plasma Phys. Control. Fusion 48, A371 (2006).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • T. A. Khusainov
    • 1
  • E. D. Gospodchikov
    • 1
  • A. G. Shalashov
    • 1
  1. 1.Institute of Applied PhysicsRussian Academy of SciencesNizhny NovgorodRussia

Personalised recommendations