Journal of Experimental and Theoretical Physics

, Volume 126, Issue 2, pp 183–193 | Cite as

Two-Dimensional Hydrogen-like Atom: Photon Emission and Relativistic Energy Corrections

Nuclei, Particles, Fields, Gravitation, and Astrophysics
  • 12 Downloads

Abstract

Using the well-known solution Ψ S of the Schrödinger equation for an electron in the field of a nucleus (Ze) in polar coordinates, via which the spin-state-dependent Dirac spinor Ψ± obtained here is expressed, and by extending the QED methods to subspace {0; 1, 2}, we have calculated the probability of single-photon emission by a two-dimensional hydrogen-like atom with allowance made for the polarization and spin states. Relativistic energy corrections ∼(Zα)4 to the energy value have also been found. We show that the so-called contact interaction typical of a three-dimensional hydrogen-like atom also takes place in the twodimensional case, while the ordinary three-dimensional spin–orbit interaction is absent altogether.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Gorlitz et al., Phys. Rev. Lett. 87, 130402 (2001).ADSCrossRefGoogle Scholar
  2. 2.
    V. V. Skobelev, J. Exp. Theor. Phys. 124, 877 (2017).ADSCrossRefGoogle Scholar
  3. 3.
    V. V. Skobelev, J. Exp. Theor. Phys. 125, (2017, in press).Google Scholar
  4. 4.
    B. Zaslow and C. E. Zandler, Am. J. Phys. 35, 1118 (1967).ADSCrossRefGoogle Scholar
  5. 5.
    A. Gisneros and N. V. McIntosh, J. Math. Phys. 10, 277 (1968).CrossRefGoogle Scholar
  6. 6.
    L. G. Mardoyan, G. S. Pogosyan, A. S. Sisakyan, and V. M. Ter-Antonyan, Sov. J. Theor. Math. Phys. 61, 1021 (1984).CrossRefGoogle Scholar
  7. 7.
    A. Poszwa and A. Rutkowski, Acta Phys. Polon. A 117, 439 (2010).CrossRefGoogle Scholar
  8. 8.
    A. Aquino, G. Camroy, and A. Flores-Riveros, Int. J. Quantum. Chem. 103, 267 (2005).ADSCrossRefGoogle Scholar
  9. 9.
    L. Chaos-Cador and E. Ley-Koo, Int. J. Quantum. Chem. 107, 12 (2007).ADSCrossRefGoogle Scholar
  10. 10.
    C. A. Coulson and P. D. Robinson, Proc. Phys. Soc. 71, 815 (1958).ADSCrossRefGoogle Scholar
  11. 11.
    L. G. Mardoyan, G. S. Pogosyan, A. N. Sissakyan, and V. M. Ter-Antoyan, J. Phys. A 16, 711 (1983).ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    S. H. Guo, X. L. Yang, F. T. Chan, K. W. Wong, and W. Y. Ching, Phys. Rev. A 43, 1197 (1991).ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    Yu. A. Bychkov and E. I. Rashba, JETP Lett. 39, 78 (1984).ADSGoogle Scholar
  14. 14.
    G. Grimaldi, Phys. Rev. B 77, 113308 (2008).ADSCrossRefGoogle Scholar
  15. 15.
    S.-H. Dong and Z.-Q. Ma, Phys. Lett. A 312, 78 (2003).ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    Xiao-Yan Gu, Zhong-Qi Ma, and Shi-Hai Dong, Int. J. Mod. Phys. E 11, 335 (2002).ADSCrossRefGoogle Scholar
  17. 17.
    X. L. Yang, S. H. Guo, F. T. Chan, K. W. Wong, and W. Y. Ching, Phys. Rev. A 43, 1186 (1991).ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    S. H. Guo, X. L. Yang, and F. T. Chan, Phys. Rev. A 43, 1197 (1991).ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    V. V. Skobelev, J. Exp. Theor. Phys. 122, 248 (2016); Zh. Eksp. Teor. Fiz. 149, 909(E) (2016).ADSCrossRefGoogle Scholar
  20. 20.
    V. V. Skobelev, Russ. Phys. J. 59, 48 (2016).CrossRefGoogle Scholar
  21. 21.
    A. A. Sokolov, Yu. M. Loskutov, and I. M. Ternov, Quantum Mechanics (Uchpedgiz, Moscow, 1962) [in Russian].MATHGoogle Scholar
  22. 22.
    V. V. Skobelev, Russ. Phys. J. 59, 1076 (2016).CrossRefGoogle Scholar
  23. 23.
    V. V. Skobelev, Russ. Phys. J. 59, 1623 (2016).CrossRefGoogle Scholar
  24. 24.
    V. V. Skobelev, Russ. Phys. J. 60, 50 (2017).CrossRefGoogle Scholar
  25. 25.
    H. Bethe and E. Salpeter, Quantum Mechanics of Oneand Two-Electron Atoms (Springer, Berlin, 1957).CrossRefMATHGoogle Scholar
  26. 26.
    V. B. Berestetskii, E. M. Lifshitz, and L. P. Pitaevskii, Course of Theoretical Physics, Vol. 4: Quantum Electrodynamics (Fizmatlit, Moscow, 1968; Pergamon, Oxford, 1982), Pt. 1.Google Scholar
  27. 27.
    L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 3: Quantum Mechanics: Non-Relativistic Theory (Nauka, Moscow, 1989, 4th ed.; Pergamon, New York, 1977, 3rd ed.).Google Scholar
  28. 28.
    C. P. Slichter, Principles of Magnetic Resonance (Springer, Berlin, 1980).Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  1. 1.Moscow Polytechnic UniversityMoscowRussia

Personalised recommendations