Journal of Experimental and Theoretical Physics

, Volume 126, Issue 2, pp 201–209 | Cite as

Anomalous Heat and Momentum Transport Arising from Surface Roughness in a Normal 3He Slab

Solids and Liquids
  • 10 Downloads

Abstract

I discuss heat and momentum transport in a mesoscopic film of 3He, confined by rough walls in the normal Fermi liquid state. Inelastic binary quasiparticle scattering mediated by elastic scattering from the surface roughness gives rise to a coherent “mixed” scattering channel that drives anomalous transport over a range of temperature. I calculate the thermal conductivity and viscosity of the film in this regime and derive these in terms of the film thickness and autocorrelation function of the surface roughness, which enters the formulation as an independent input. This calculation can be useful in understanding and isolating the effects of confinement and surface roughness, especially in the context of exploring the superfluid state in the film.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Vollhardt and P. Wolfle, The Superfluid Phases of Helium 3 (Taylor and Francis, London, 1990).MATHGoogle Scholar
  2. 2.
    G. E. Volovik, The Universe in a Helium Droplet (Clarendon, Oxford, 2003).MATHGoogle Scholar
  3. 3.
    J. D. Sau, R. M. Lutchyn, S. Tewari, and S. Das Sarma, Phys. Rev. Lett. 104, 040502 (2010).ADSCrossRefGoogle Scholar
  4. 4.
    S. B. Chung and Sh.-Ch. Zhang, Phys. Rev. Lett. 103, 235301 (2009).ADSCrossRefGoogle Scholar
  5. 5.
    L. V. Levitin, R. G. Bennett, E. V. Surovtsev, et al., Phys. Rev. Lett. 111, 235304 (2013).ADSCrossRefGoogle Scholar
  6. 6.
    L. V. Levitin, R. G. Bennett, A. Casey, et al., Science 340, 841 (2013).ADSCrossRefGoogle Scholar
  7. 7.
    A. B. Vorontsov and J. A. Sauls, Phys. Rev. Lett. 98, 045301 (2007).ADSCrossRefGoogle Scholar
  8. 8.
    A. Casey, J. Parpia, R. Scanen, et al., Phys. Rev. Lett. 92, 255301 (2004).ADSCrossRefGoogle Scholar
  9. 9.
    E. M. Lifshits and L. P. Pitaevski, Course of Theoretical Physics, Vol. 9: Statistical Physics, Part 2 (Nauka, Moscow, 1978; Pergamon, New York, 1980).Google Scholar
  10. 10.
    A. J. Leggett, Rev. Mod. Phys. 47, 331 (1975).ADSCrossRefGoogle Scholar
  11. 11.
    J. C. Wheatley, Rev. Mod. Phys. 47, 415 (1975).ADSCrossRefGoogle Scholar
  12. 12.
    Z. Tesanovic, M. V. Jaric, and S. Maekawa, Phys. Rev. Lett. 57, 2760 (1986).ADSCrossRefGoogle Scholar
  13. 13.
    N. Trivedi and N. W. Ashcroft, Phys. Rev. B 38, 12298 (1988).ADSCrossRefGoogle Scholar
  14. 14.
    A. E. Meyerovich and A. Stepaniants, Phys. Rev. B 58, 13242 (1998).ADSCrossRefGoogle Scholar
  15. 15.
    A. E. Meyerovich and A. Stepaniants, Phys. Rev. B 60, 9129 (1999).ADSCrossRefGoogle Scholar
  16. 16.
    A. E. Meyerovich and I. V. Ponomarev, Phys. Rev. B 65, 155413 (2002).ADSCrossRefGoogle Scholar
  17. 17.
    A. E. Meyerovich and A. Stepaniants, J. Phys.: Condens. Matter 12, 5575 (2000).ADSGoogle Scholar
  18. 18.
    P. Sharma, A. Corcoles, R. G. Bennett, et al., Phys. Rev. Lett. 107, 196805 (2011).ADSCrossRefGoogle Scholar
  19. 19.
    B. N. J. Persson, O. Albohr, U. Tartaglino, et al., J. Phys.: Condens. Matter 17, R1 (2005).Google Scholar
  20. 20.
    H. A. Mavromatis and R. S. Alassar, Appl. Math. Lett. 12, 101 (1999).MathSciNetCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  1. 1.Department of PhysicsIndian Institute of ScienceBangaloreIndia

Personalised recommendations