Advertisement

Journal of Experimental and Theoretical Physics

, Volume 126, Issue 1, pp 132–145 | Cite as

Laser Simulations of the Destructive Impact of Nuclear Explosions on Hazardous Asteroids

  • E. Yu. Aristova
  • A. A. Aushev
  • V. K. Baranov
  • I. A. Belov
  • S. A. Bel’kov
  • A. Yu. Voronin
  • I. N. Voronich
  • R. V. Garanin
  • S. G. Garanin
  • K. G. Gainullin
  • A. G. Golubinskii
  • A. V. Gorodnichev
  • V. A. Denisova
  • V. N. Derkach
  • V. S. Drozhzhin
  • I. A. Ericheva
  • N. V. Zhidkov
  • R. I. Il’kaev
  • A. A. Krayukhin
  • A. G. Leonov
  • D. N. Litvin
  • K. N. Makarov
  • A. S. Martynenko
  • V. I. Malinov
  • V. V. Mis’ko
  • V. G. Rogachev
  • A. N. Rukavishnikov
  • E. A. Salatov
  • Yu. V. Skorochkin
  • G. Yu. Smorchkov
  • A. L. Stadnik
  • V. A. Starodubtsev
  • P. V. Starodubtsev
  • R. R. Sungatullin
  • N. A. Suslov
  • T. I. Sysoeva
  • V. Yu. Khatunkin
  • E. S. Tsoi
  • O. N. Shubin
  • V. N. Yufa
Statistical, Nonlinear, and Soft Matter Physics

Abstract

We present the results of preliminary experiments at laser facilities in which the processes of the undeniable destruction of stony asteroids (chondrites) in space by nuclear explosions on the asteroid surface are simulated based on the principle of physical similarity. We present the results of comparative gasdynamic computations of a model nuclear explosion on the surface of a large asteroid and computations of the impact of a laser pulse on a miniature asteroid simulator confirming the similarity of the key processes in the fullscale and model cases. The technology of fabricating miniature mockups with mechanical properties close to those of stony asteroids is described. For mini-mockups 4–10 mm in size differing by the shape and impact conditions, we have made an experimental estimate of the energy threshold for the undeniable destruction of a mockup and investigated the parameters of its fragmentation at a laser energy up to 500 J. The results obtained confirm the possibility of an experimental determination of the criteria for the destruction of asteroids of various types by a nuclear explosion in laser experiments. We show that the undeniable destruction of a large asteroid is possible at attainable nuclear explosion energies on its surface.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. E. Prokhorov and A. I. Zakharov, Vestn. Sib. Aerokosm. Univ., No. 6, 118 (2011).Google Scholar
  2. 2.
    Workshop on Hearing Charter: Near-Earth Objects: Status of the Survey Program and Review of NASA’s 2007 Report to Congress, Washington, DC, Nov. 8, 2007.Google Scholar
  3. 3.
    V. G. Surdin, Turin Asteroid Hazard Scale (2002). http://www.krugosvet.ru/enc/nauka_i_tehnika/astronomiya/TURINSKAYA_SHKALA_ ASTEROIDNO_OPASNOSTI.html.Google Scholar
  4. 4.
    M. E. Gertsenshtein, V. V. Klavdiev, B. N. Shvilkin, et al., Nauka Tekhnol. Razrab. 89 (1), 45 (2010).Google Scholar
  5. 5.
    J. Chu, MIT News, Oct. 26 (2012). http://newsoffice. mit.edu.Google Scholar
  6. 6.
    S. Dillow, Bonnier, April 9 (2012).Google Scholar
  7. 7.
    B. Wie, Optimal Dispersion of Near-Earth Objects (NASA, 2013).Google Scholar
  8. 8.
    G. Vardaxis, T. Winkler, B. Wie, A. Pitz, and B. Kaplinger, Conceptual Design of a Hypervelocity Asteroid Intercept (Asteroid Deflection Res. Center, Iowa State Univ., IA, 2012).Google Scholar
  9. 9.
    Selected Abstracts of Asteroid Initiative Idea Synthesis Workshop, NASA, Nov. 20–22, 2013.Google Scholar
  10. 10.
    O. N. Shubin, Report on Round Table of Federation Council RF, March 12, 2013, Moscow; defense.council. gov.ru.Google Scholar
  11. 11.
    D. Messier, SPASE.com Contributor, May 29 (2013).Google Scholar
  12. 12.
    Physics of Nuclear Explosion, Vol. 1: Explosion Development (TsFTI MO RF, Moscow, 2000) [in Russian].Google Scholar
  13. 13.
    Ya. B. Zeldovich and Yu. P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena, Vols. 1 and 2 (Nauka, Moscow, 1966; Academic Press, New York, 1966, 1967).Google Scholar
  14. 14.
    B. A. Voinov, P. D. Gasparyan, Yu. K. Kochubei, and V. I. Roslov, Vopr. At. Nauki Tekh., Ser. Metod. Program. Chisl. Reshen. Zadach Mat. Fiz., No. 2, 39 (1993).Google Scholar
  15. 15.
    Yu. V. Yanilkin, S. P. Belyaev, A. V. Gorodnichev, A. V. Volgin, et al., Vopr. At. Nauki Tekh., Ser. Mat. Model. Fiz. Protses., No. 1, 20 (2003).Google Scholar
  16. 16.
    B. V. Zamyshlyaev and L. S. Evterev, Models of Dynamic Deformation and Failure of Rock Masses (Nauka, Moscow, 1990) [in Russian].Google Scholar
  17. 17.
    G. S. Collins, H. J. Melosh, and B. A. Ivanov, Meteorit. Planet. Sci. 39, 217 (2004).ADSCrossRefGoogle Scholar
  18. 18.
    G. M. Eliseev and G. E. Klinishov, KIAM Preprint No. 173 (Keldysh Inst. Appl. Math., Moscow, 1982).Google Scholar
  19. 19.
    M. I. Avramenko, I. V. Glazyrin, G. V. Ionov, and A. V. Karpeev, Calculation of Explosive Wave Parameters Caused by Chelyabinsk Bolide (RFYaTs–VNIITF, Snezhinsk, 2013) [in Russian].Google Scholar
  20. 20.
    G. A. Vinogradov and I. D. Radomysel’skii, Pressing and Rolling Metal-Ceramic Materials (Mashgiz, Moscow, 1963) [in Russian].Google Scholar
  21. 21.
    S. S. Kiparisov and G. A. Libenson, Powder Metallurgy (Metallurgiya, Moscow, 1980) [in Russian].Google Scholar
  22. 22.
    V. I. Annenkov, V. A. Bagretsov, V. G. Bezuglov, L. M. Vinogradskii, V. A. Gaidash, I. V. Galakhov, A. S. Gasheev, I. P. Guzov, V. I. Zadorozhnyii, V. A. Yeroshenko, A. Yu. Il’in, V. A. Kargin, G. A. Kirillov, G. G. Kochemasov, V. A. Krotov, et al., Sov. J. Quantum Electron. 21, 487 (1991).ADSCrossRefGoogle Scholar
  23. 23.
    N. N. Beznasyuk, I. V. Galakhov, S. G. Garanin, et al., in Proceedings of the 4th Kharitonov’s Scientific Readings (RFYaTs–VNIIEF, Sarov, 2002), p. 82.Google Scholar
  24. 24.
    I. S. Timofeev, N. L. Aleksandrov, I. N. Burdonskiy, A. Yu. Goltsov, et al., Laser Phys. 24, 126002 (2014).ADSCrossRefGoogle Scholar
  25. 25.
    A. G. Kravchenko, D. N. Litvin, V. V. Mis’ko, V. M. Murugov, A. V. Senik, and V. A. Starodubtsev, Plasma Phys. Rep. 32, 144 (2006).ADSCrossRefGoogle Scholar
  26. 26.
    P. D. Sargis, N. E. Molau, D. Sweider, and M. E. Lowry, LLNL Report No. UCRL-ID-133075 (Lawrence Livermore Natl. Labor., Livermore, CA, 1999).Google Scholar
  27. 27.
    I. N. Burdonskii, A. Yu. Gol’tsov, A. G. Leonov, et al., Vopr. At. Nauki Tekh., Ser. Termoyad. Sintez 36 (2), 8 (2013).Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • E. Yu. Aristova
    • 1
  • A. A. Aushev
    • 1
  • V. K. Baranov
    • 1
  • I. A. Belov
    • 1
  • S. A. Bel’kov
    • 1
  • A. Yu. Voronin
    • 1
  • I. N. Voronich
    • 1
  • R. V. Garanin
    • 1
  • S. G. Garanin
    • 1
  • K. G. Gainullin
    • 1
  • A. G. Golubinskii
    • 1
  • A. V. Gorodnichev
    • 1
  • V. A. Denisova
    • 1
  • V. N. Derkach
    • 1
  • V. S. Drozhzhin
    • 1
  • I. A. Ericheva
    • 1
  • N. V. Zhidkov
    • 1
  • R. I. Il’kaev
    • 1
  • A. A. Krayukhin
    • 1
  • A. G. Leonov
    • 2
  • D. N. Litvin
    • 1
  • K. N. Makarov
    • 2
  • A. S. Martynenko
    • 1
  • V. I. Malinov
    • 1
  • V. V. Mis’ko
    • 1
  • V. G. Rogachev
    • 1
  • A. N. Rukavishnikov
    • 1
  • E. A. Salatov
    • 1
  • Yu. V. Skorochkin
    • 1
  • G. Yu. Smorchkov
    • 1
  • A. L. Stadnik
    • 1
  • V. A. Starodubtsev
    • 1
  • P. V. Starodubtsev
    • 1
  • R. R. Sungatullin
    • 1
  • N. A. Suslov
    • 1
  • T. I. Sysoeva
    • 1
  • V. Yu. Khatunkin
    • 1
  • E. S. Tsoi
    • 1
  • O. N. Shubin
    • 3
  • V. N. Yufa
    • 2
  1. 1.Russian Federal Nuclear Center—VNIIEFSarov, Nizhegorodskaya oblastRussia
  2. 2.Federal State Autonomous Higher Education Institution “Moscow Institute of Physics and Technology,”Dolgoprudnyi, Moscow oblastRussia
  3. 3.State Atomic Energy Corporation “Rosatom,”MoscowRussia

Personalised recommendations