Advertisement

Journal of Experimental and Theoretical Physics

, Volume 125, Issue 6, pp 1083–1089 | Cite as

Searching for Constraints on Starobinsky’s Model with a Disappearing Cosmological Constant on Galaxy Cluster Scales

  • S. O. Alexeyev
  • B. N. Latosh
  • V. A. Echeistov
Nuclei, Particles, Fields, Gravitation, and Astrophysics

Abstract

Predictions of the f(R)-gravity model with a disappearing cosmological constant (Starobinsky’s model) on scales characteristic of galaxies and their clusters are considered. The absence of a difference in the mass dependence of the turnaround radius between Starobinsky’s model and General Relativity accessible to observation at the current accuracy of measurements has been established. This is true both for small masses (from 109MSun) corresponding to an individual galaxy and for masses corresponding to large galaxy clusters (up to 1015MSun). The turnaround radius increases with parameter n for all masses. Despite the fact that some models give a considerably smaller turnaround radius than does General Relativity, none of the models goes beyond the bounds specified by the observational data.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. W. Clifford, Living Rev. Rel. 17, 4 (2014).CrossRefGoogle Scholar
  2. 2.
    B. P. Abbott et al., Phys. Rev. Lett. 116, 061102 (2016).ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    B. P. Abbott et al., Phys. Rev. Lett. 116, 221101 (2016).ADSCrossRefGoogle Scholar
  4. 4.
    V. M. Lipunov, K. A. Postnov, and M. E. Prokhorov, New Astron. 2, 43 (1997).ADSCrossRefGoogle Scholar
  5. 5.
    V. M. Lipunov, K. A. Postnov, and M. E. Prokhorov, Mon. Not. R. Astron. Soc. 288, 245 (1997).ADSCrossRefGoogle Scholar
  6. 6.
    P. A. R. Ade et al., Astron. Astrophys. 594, A13 (2016).CrossRefGoogle Scholar
  7. 7.
    Ya. B. Zel’dovich, Sov. Phys. Usp. 11, 381 (1968).ADSCrossRefGoogle Scholar
  8. 8.
    S. Weinberg, Rev. Mod. Phys. 61, 1 (1989).ADSCrossRefGoogle Scholar
  9. 9.
    M. H. Goroff and A. Sagnotti, Nucl. Phys. B 266, 709 (1986).ADSCrossRefGoogle Scholar
  10. 10.
    C. P. Burgess, Living Rev. Rel. 7, 5 (2004).CrossRefGoogle Scholar
  11. 11.
    A. D. Linde, Lect. Notes Phys. 738, 1 (2008).ADSCrossRefGoogle Scholar
  12. 12.
    S. Capozziello and M. de Laurentis, Phys. Rep. 509, 167 (2011).ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    T. Clifton, P. G. Ferreira, A. Padilla, and C. Skordis, Phys. Rep. 513, 1 (2012).ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    E. Berti et al., Class. Quantum Grav. 32, 243001 (2015).ADSCrossRefGoogle Scholar
  15. 15.
    A. de Felice and S. Tsujikawa, Living Rev. Rel. 13, 3 (2010).CrossRefGoogle Scholar
  16. 16.
    V. Faraoni, Phys. Rev. D 72, 124005 (2005).ADSCrossRefGoogle Scholar
  17. 17.
    A. A. Starobinsky, JETP Lett. 86, 157 (2007).ADSCrossRefGoogle Scholar
  18. 18.
    A. A. Starobinsky, Phys. Lett. B 91, 99 (1980).ADSCrossRefGoogle Scholar
  19. 19.
    S. Nojiri and S. D. Odintsov, Phys. Lett. B 576, 5 (2003).ADSCrossRefGoogle Scholar
  20. 20.
    S. Capozziello and M. Francaviglia, Gen. Rel. Grav. 40, 357 (2008).ADSCrossRefGoogle Scholar
  21. 21.
    C. Charmousis, Lect. Notes Phys. 892, 25 (2015).ADSCrossRefGoogle Scholar
  22. 22.
    J. Ntahompagaze, A. Abebe, and M. Mbonye, Int. J. Geom. Meth. Mod. Phys. 14, 1750107 (2017).CrossRefGoogle Scholar
  23. 23.
    G. Byrd, A. Chernin, P. Teerikorpi, and M. Valtonen, De Gruyter Srud. Math. Phys. 28 (2015); arXiv:1411.5860.Google Scholar
  24. 24.
    G. Byrd, A. D. Chernin, P. Teerikorpi, and M. Valtonen, Paths to Dark Energy (De Gruyter, Berlin, 2012), Vol. 2.CrossRefzbMATHGoogle Scholar
  25. 25.
    A. D. Chernin, JETP Lett. 98, 353 (2013).ADSCrossRefGoogle Scholar
  26. 26.
    A. D. Chernin, N. V. Emelyanov, and I. D. Karachentsev, Mon. Not. R. Astron. Soc. 449, 2069 (2015).ADSCrossRefGoogle Scholar
  27. 27.
    R. Nandra, A. N. Lasenby, and M. P. Hobson, Mon. Not. R. Astron. Soc. 422, 2931 (2012).ADSCrossRefGoogle Scholar
  28. 28.
    V. Faraoni, Phys. Dark Univ. 11, 11 (2016).CrossRefGoogle Scholar
  29. 29.
    I. D. Karachentsev, R. B. Tully, Po-Feng Wu, E. J. Shaya, and A. E. Dolphin, Astrophys. J. 782, 4 (2014).ADSCrossRefGoogle Scholar
  30. 30.
    V. Pavlidou and T. N. Tomaras, J. Cosmol. Astropart. Phys. 1409, 020 (2014).ADSCrossRefGoogle Scholar
  31. 31.
    J. Kormendy, D. B. Fisher, M. E. Cornell, and R. Bender, Astrophys. J. Suppl. 182, 216 (2009).ADSCrossRefGoogle Scholar
  32. 32.
    B. Binggeli, Astron. Astrophys. 107, 338 (1982).ADSGoogle Scholar
  33. 33.
    A. I. Zabludoff and M. J. Geller, Astron. J. 107, 1929 (1994).ADSCrossRefGoogle Scholar
  34. 34.
    S. Capozziello, A. Stabile, and A. Troisi, Phys. Rev. D 76, 104019 (2007).ADSMathSciNetCrossRefGoogle Scholar
  35. 35.
    T. Multamaki and I. Vilja, Phys. Rev. D 74, 064022 (2006).ADSMathSciNetCrossRefGoogle Scholar
  36. 36.
    T. Multamaki and I. Vilja, Phys. Rev. D 76, 064021 (2007).ADSCrossRefGoogle Scholar
  37. 37.
    R. E. Bank et al., IEEE Trans. Electron Dev. 39, 1031 (1983).ADSCrossRefGoogle Scholar
  38. 38.
    G. M. Eadie and W. E. Harris, Astrophys. J. 829, 108 (2016).ADSCrossRefGoogle Scholar
  39. 39.
    A. Zitrin et al., Astrophys. J. 801, 44 (2015).ADSCrossRefGoogle Scholar
  40. 40.
    K. Umetsu et al., Astrophys. J. 795, 163 (2014).ADSCrossRefGoogle Scholar
  41. 41.
    A. B. Newman, T. Treu, R. S. Ellis, D. J. Sand, C. Nipoti, J. Richard, and E. Jullo, Astrophys. J. 765, 24 (2013).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2017

Authors and Affiliations

  • S. O. Alexeyev
    • 1
  • B. N. Latosh
    • 2
    • 3
  • V. A. Echeistov
    • 4
  1. 1.Sternberg Astronomical InstituteLomonosov Moscow State UniversityMoscowRussia
  2. 2.Bogoliubov Laboratory of Theoretical PhysicsJoint Institute for Nuclear ResearchDubna, Moscow oblastRussia
  3. 3.Dubna State UniversityDubna, Moscow oblastRussia
  4. 4.Faculty of PhysicsMoscow State UniversityMoscowRussia

Personalised recommendations