Scaling Invariance and Characteristics of the Cloud of Spherical Projectile Fragmentation Products upon High-Velocity Impact on a Thin Mesh Shield

  • N. N. MyagkovEmail author
Solids and Liquids


In this paper, we consider the problem of the fragmentation of an aluminum projectile on a thin steel mesh shield at high-velocity impact in a three-dimensional (3D) setting. The numerical simulations are carried out by the smoothed particle hydrodynamics method applied to the equations of mechanics of deformable solids. Quantitative characteristics of the projectile fragmentation are obtained by studying statistics of the cloud of fragments. Considerable attention is given to scaling laws accompanying the fragmentation of the projectile. Scaling is carried out using the parameter K, which defines the number of the mesh cells in the projectile diameter. It is found that the dependence of the critical velocity Vc of fragmentation on the parameter K consists of two branches that correspond to two modes of the projectile fragmentation associated with the “small” and “large” aperture of the mesh cell. We obtain the dependences of the critical velocity Vc on the projectile diameter and the mesh parameters for both modes of the fragmentation. It is shown that the average cumulative mass distributions constructed at Vc exhibit the property of scale invariance, splitting into two groups of distributions corresponding exactly to the modes of the projectile fragmentation. In each group, the average cumulative distributions show good coincidence in the entire mass region; moreover, in the intermediate mass region, each group of distributions has a power-law distribution with an exponent τ different from that in the other group. Conclusions about the dependence of the exponent of the power-law distribution τ on the fragmentation mode are made.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. K. Hartmann, Icarus 10, 201 (1969).ADSCrossRefGoogle Scholar
  2. 2.
    D. E. Grady and M. E. Kipp, Int. J. Impact Eng. 20, 293 (1997).CrossRefGoogle Scholar
  3. 3.
    X. Campi, J. Phys. A 19, L917 (1986).ADSCrossRefGoogle Scholar
  4. 4.
    J. Richert and P. Wagner, Phys. Rep. 350, 1 (2001).ADSCrossRefGoogle Scholar
  5. 5.
    A. J. Piekutowski, Int. J. Impact Eng. 17, 627 (1995).CrossRefGoogle Scholar
  6. 6.
    A. J. Piekutowski, Int. J. Impact Eng. 20, 639 (1997).CrossRefGoogle Scholar
  7. 7.
    J. A. Åström, B. L. Holian, and J. Timonen, Phys. Rev. Lett. 84, 3061 (2000).ADSCrossRefGoogle Scholar
  8. 8.
    N. N. Myagkov, J. Exp. Theor. Phys. 124, 57 (2017).ADSCrossRefGoogle Scholar
  9. 9.
    N. N. Myagkov and V. V. Stepanov, Physica A 410, 120 (2014).ADSCrossRefGoogle Scholar
  10. 10.
    N. N. Myagkov and T. A. Shumikhin, Physica A 358, 423 (2005).ADSCrossRefGoogle Scholar
  11. 11.
    N. N. Myagkov, T. A. Shumikhin, and L. N. Bezrukov, Int. J. Impact Eng. 37, 980 (2010).CrossRefGoogle Scholar
  12. 12.
    F. Kun and H. Herrmann, Phys. Rev. E 59, 2623 (1999).ADSCrossRefGoogle Scholar
  13. 13.
    F. Wittel, F. Kun, H. J. Herrmann, and B. H. Kröplin, Phys. Rev. E 71, 016108 (2005).ADSCrossRefGoogle Scholar
  14. 14.
    H. Katsuragi, D. Sugino, and H. Honjo, Phys. Rev. E 68, 046105 (2003); H. Katsuragi, D. Sugino, and H. Honjo, Phys. Rev. E 70, 065103(R) (2004).ADSCrossRefGoogle Scholar
  15. 15.
    F. Moukarzel, S. F. Fernandez-Sabido, and J. C. Ruiz-Suarez, Phys. Rev. E 75, 061127 (2007).ADSCrossRefGoogle Scholar
  16. 16.
    G. Timar, F. Kun, H. A. Carmona, and H. J. Herrmann, Phys. Rev. E 86, 016113 (2012).ADSCrossRefGoogle Scholar
  17. 17.
    G. Timar, J. Blömer, F. Kun, and H. J. Herrmann, Phys. Rev. Lett. 104, 09550 (2010).CrossRefGoogle Scholar
  18. 18.
    G. Pal, I. Varga, and F. Kun, Phys. Rev. E 90, 062811 (2014).ADSCrossRefGoogle Scholar
  19. 19.
    X. Campi, Phys. Lett. B 208, 351 (1988).ADSCrossRefGoogle Scholar
  20. 20.
    X. Campi, H. Krivine, N. Sator, and E. Plagnol, Eur. Phys. J. D 11, 233 (2000).ADSGoogle Scholar
  21. 21.
    D. E. Grady and N. A. Winfree, Int. J. Impact Eng. 26, 249 (2001).CrossRefGoogle Scholar
  22. 22.
    T. A. Shumikhin, N. N. Myagkov, and L. N. Bezrukov, Int. J. Impact Eng. 50, 90 (2012).CrossRefGoogle Scholar
  23. 23.
    A. Meibom and I. Balslev, Phys. Rev. Lett. 76, 2492 (1996).ADSCrossRefGoogle Scholar
  24. 24.
    N. Sator, S. Mechkov, and F. Sausset, Eur. Phys. Lett. 81, 44002 (2008).ADSCrossRefGoogle Scholar
  25. 25.
    L. Oddeshede, P. Dimon, and J. Bohr, Phys. Rev. Lett. 71, 3107 (1993).ADSCrossRefGoogle Scholar
  26. 26.
    D. Stauffer and A. Aharony, Introduction to Percolation Theory (Taylor Francis, Bristol, 1994).zbMATHGoogle Scholar
  27. 27.
    J. Monaghan, Rep. Prog. Phys. 68, 1703 (2005).ADSCrossRefGoogle Scholar
  28. 28.
    D. Libersky, A. G. Petscheck, et al., J. Comput. Phys. 109, 67 (1993).ADSCrossRefGoogle Scholar
  29. 29.
    F. Stellingwerf and C. A. Wingate, Int. J. Impact Eng. 14, 707 (1993).CrossRefGoogle Scholar
  30. 30.
    O. Hallquist, LS-DYNA Theory Manual (Livermore Software Technol. Corp., Livermore, 2005).Google Scholar
  31. 31.
    Y. B. Zel’dovich and Y. P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (Academic, New York, 1966).Google Scholar
  32. 32.
    G. R. Johnson and W. H. Cook, in Proceedings of the 7th International Symposium on Ballistics, 1983, p. 541.Google Scholar
  33. 33.
    G. I. Kanel, S. V. Razorenov, and V. E. Fortov, Shock-Wave Phenomena and the Properties of Condensed Matter (Springer, New York 2004).CrossRefGoogle Scholar
  34. 34.
    E. L. Christiansen, J. L. Crews, J. E. Williamsen, J. H. Robinson, and A. M. Nolen, Int. J. Impact Eng. 17, 217 (1995).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  1. 1.Institute of Applied MechanicsRussian Academy of SciencesMoscowRussia

Personalised recommendations