Advertisement

Journal of Experimental and Theoretical Physics

, Volume 125, Issue 5, pp 896–905 | Cite as

Oscillation phenomena and experimental determination of exact mathematical stability zones for magneto-conductivity in metals having complicated Fermi surfaces

  • A. Ya. Maltsev
Electronic Properties of Solid

Abstract

We consider the problem of exact experimental determination of the boundaries of Stability Zones for magneto-conductivity in normal metals in the space of directions of magnetic field B. As can be shown, this problem turns out to be nontrivial since the exact boundaries of Stability Zones are in fact unobservable in direct measurements of conductivity. However, this problem can be effectively solved with the aid of the study of oscillation phenomena (cyclotron resonance, quantum oscillations) in normal metals, which reveal a singular behavior on the mathematical boundary of a Stability Zone.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    I. M. Lifshits, M. Ya. Azbel’, and M. I. Kaganov, Sov. Phys. JETP 4, 41 (1957).Google Scholar
  2. 2.
    I. M. Lifshits and V. G. Peschanskii, Sov. Phys. JETP 8, 875 (1958).Google Scholar
  3. 3.
    I. M. Lifshits and V. G. Peschanskii, Sov. Phys. JETP 11, 137 (1960).Google Scholar
  4. 4.
    I. M. Lifshits and M. I. Kaganov, Sov. Phys. Usp. 2, 831 (1959).ADSCrossRefGoogle Scholar
  5. 5.
    I. M. Lifshits and M. I. Kaganov, Sov. Phys. Usp. 5, 878 (1962).ADSCrossRefGoogle Scholar
  6. 6.
    I. M. Lifshits and M. I. Kaganov, Sov. Phys. Usp. 7, 805 (1965).Google Scholar
  7. 7.
    I. M. Lifshits, M. Ya. Azbel’, and M. I. Kaganov, Electron Theory of Metals (Nauka, Moscow, 1971; Consultants Bureau, New York, 1973).MATHGoogle Scholar
  8. 8.
    M. I. Kaganov and V. G. Peschansky, Phys. Rep. 372, 445 (2002).ADSCrossRefGoogle Scholar
  9. 9.
    S. P. Novikov, Russ. Math. Surv. 37, 1 (1982).CrossRefGoogle Scholar
  10. 10.
    A. V. Zorich, Russ. Math. Surv. 39, 287 (1984).CrossRefGoogle Scholar
  11. 11.
    I. A. Dynnikov, Russ. Math. Surv. 47, 172 (1992).MathSciNetCrossRefGoogle Scholar
  12. 12.
    S. P. Tsarev, Private Commun. (1992–1993).Google Scholar
  13. 13.
    I. A. Dynnikov, Math. Notes 53, 495 (1993).MathSciNetCrossRefGoogle Scholar
  14. 14.
    I. A. Dynnikov, in Solitons, Geometry, and Topology: On the Crossroad, Vol. 179 of Am. Math. Soc. Transl., Ser. 2 (Am. Math. Soc., Providence, RI, 1997), p.45.MATHGoogle Scholar
  15. 15.
    S. P. Novikov and A. Ya. Mal’tsev, JETP Lett. 63, 855 (1996).ADSCrossRefGoogle Scholar
  16. 16.
    I. A. Dynnikov, Russ. Math. Surv. 54, 21 (1999).MathSciNetCrossRefGoogle Scholar
  17. 17.
    S. P. Novikov and A. Ya. Mal’tsev, Phys. Usp. 41, 231 (1998).CrossRefGoogle Scholar
  18. 18.
    A. Ya. Maltsev and S. P. Novikov, Bull. Braz. Math. Soc., New Ser. 34, 171 (2003).CrossRefGoogle Scholar
  19. 19.
    A. Ya. Maltsev and S. P. Novikov, J. Stat. Phys. 115, 31 (2004).ADSCrossRefGoogle Scholar
  20. 20.
    R. de Leo, Phys. B: Condens. Matter 362, 62 (2005).ADSCrossRefGoogle Scholar
  21. 21.
    A. V. Zorich, in Proceedings of the Conference on Geometric Study of Foliations, Tokyo, November 1993, Ed. by T. Mizutani et al. (World Scientific, Singapore, 1994), p.479.Google Scholar
  22. 22.
    A. Ya. Maltsev, J. Exp. Theor. Phys. 85, 934 (1997).ADSCrossRefGoogle Scholar
  23. 23.
    R. de Leo, Russ. Math. Surv. 55, 166 (2000).CrossRefGoogle Scholar
  24. 24.
    R. de Leo, Russ. Math. Surv. 58, 1042 (2003).CrossRefGoogle Scholar
  25. 25.
    R. de Leo, Exp. Math. 15, 109 (2006).CrossRefGoogle Scholar
  26. 26.
    R. de Leo and I. A. Dynnikov, Russ. Math. Surv. 62, 990 (2007).CrossRefGoogle Scholar
  27. 27.
    R. de Leo and I. A. Dynnikov, Geom. Dedicata 138, 51 (2009).MathSciNetCrossRefGoogle Scholar
  28. 28.
    A. Skripchenko, Discrete Contin. Dyn. Syst. 32, 643 (2012).MathSciNetCrossRefGoogle Scholar
  29. 29.
    A. Skripchenko, Ann. Glob. Anal. Geom. 43, 253 (2013).MathSciNetCrossRefGoogle Scholar
  30. 30.
    I. Dynnikov and A. Skripchenko, in Topology, Geometry, Integrable Systems, and Mathematical Physics: Novikov’s Seminar 2012–2014, Advances in the Mathematical Sciences, Vol. 234 of Am. Math. Soc. Transl., Ser. 2, Ed. by V. M. Buchstaber, B. A. Dubrovin, and I. M. Krichever (Am. Math. Soc., Providence, RI, 2014), p. 173; arXiv:1309.4884.Google Scholar
  31. 31.
    R. N. Gurzhi and A. I. Kopeliovich, in Conductivity Electrons, Ed. M. I. Kaganov and V. S. Edel’man (Nauka, Moscow, 1985) [in Russian].Google Scholar
  32. 32.
    A. Ya. Mal’tsev, J. Exp. Theor. Phys. 124, 805 (2017).ADSCrossRefGoogle Scholar
  33. 33.
    Ch. Kittel, Quantum Theory of Solids (Wiley, New York, 1963).MATHGoogle Scholar
  34. 34.
    A. A. Abrikosov, Fundamentals of the Theory of Metals (Elsevier Science, Oxford, UK, 1988; Nauka, Moscow, 1987).Google Scholar
  35. 35.
    J. M. Ziman, Principles of the Theory of Solids (Cambridge Univ. Press, Cambridge, 1972).CrossRefMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2017

Authors and Affiliations

  1. 1.Landau Institute for Theoretical PhysicsChernogolovkaRussia

Personalised recommendations