Journal of Experimental and Theoretical Physics

, Volume 125, Issue 4, pp 714–717 | Cite as

Dissipative soliton vortices and tropical cyclones

Statistical, Nonlinear, and Soft Matter Physics


We have obtained a new exact steady-state solution to the hydrodynamic equation for a viscous incompressible liquid, which is a generalization of the well-known Sullivan solution (1959), taking into account additionally the external (Eckman) friction and rotation of the system as a single whole. In contrast to the radial structure of a Sullivan vortex, different circulation directions of velocity field tangential component are possible in the new solution in the inner and outer cells. We have considered the correspondence of this solution to the radial vortex structure observed in tropical cyclones, where the precisely anticyclonic circulation always exists in the inner core (typhoon, hurricane eye), which is associated with descending vertical currents for the cyclonic direction of rotation (as well as ascending currents) outside this core.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. G. Saffman, Vortex Dynamics (Cambridge Univ. Press, Cambridge, UK, 1992).MATHGoogle Scholar
  2. 2.
    S. G. Chefranov and A. G. Chefranov, Dokl. Phys. 60, 327 (2015).ADSCrossRefGoogle Scholar
  3. 3.
    S. G. Chefranov and A. G. Chefranov, J. Exp. Theor. Phys. 122, 925 (2016).ADSCrossRefGoogle Scholar
  4. 4.
    R. D. Sullivan, J. Aero/Space Sci. 26, 767 (1959).CrossRefGoogle Scholar
  5. 5.
    P. G. Saffman and D. I. Meiron, Phys. Fluids 29, 2377 (1986).ADSCrossRefGoogle Scholar
  6. 6.
    S. G. Chefranov, Sov. Phys. JETP 68, 307 (1989).Google Scholar
  7. 7.
    S. G. Chefranov and A. G. Chefranov, private commun.Google Scholar
  8. 8.
    S. G. Chefranov, JETP Lett. 73, 274 (2001).ADSCrossRefGoogle Scholar
  9. 9.
    V. N. Blazhko and S. G. Chefranov, Izv. Atmos. Ocean. Phys. 41, 537 (2005).MathSciNetGoogle Scholar
  10. 10.
    S. G. Chefranov, J. Exp. Theor. Phys. 122, 759 (2016).ADSCrossRefGoogle Scholar
  11. 11.
    V. P. Goncharov and V. M. Gryanik, Sov. Phys. JETP 64, 976 (1986).Google Scholar
  12. 12.
    I. V. Kolokolov and V. V. Lebedev, JETP Lett. 101, 164 (2015).ADSCrossRefGoogle Scholar
  13. 13.
    I. V. Kolokolov, V. V. Lebedev, arXiv:1511.03113v1 [nlin.CD] (2015).Google Scholar
  14. 14.
    N. A. Veretenov, N. N. Rosanov, and S. V. Fedorov, Phys. Rev. Lett. 117, 183901 (2016).ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    F. V. Dolzhanskii, V. A. Krymov, and D. Yu. Manin, Sov. Phys. Usp. 33, 495 (1990).ADSCrossRefGoogle Scholar
  16. 16.
    V. F. Dvorak, Mon. Weather. Rev. 103, 420 (1975).ADSCrossRefGoogle Scholar
  17. 17.
    D. P. Jorgensen, J. Atmos. Sci. 41, 1287 (1984).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2017

Authors and Affiliations

  1. 1.Obukhov Institute of Atmospheric PhysicsRussian Academy of SciencesMoscowRussia
  2. 2.Eastern Mediterranean UniversityFamagusta, Northern CyprusTurkey

Personalised recommendations