Advertisement

Monte Carlo Glauber wounded nucleon model with meson cloud

  • B. G. Zakharov
Nuclei, Particles, Fields, Gravitation, and Astrophysics

Abstract

We study the effect of the nucleon meson cloud on predictions of the Monte Carlo Glauber wounded nucleon model for AA, pA, and pp collisions. From the analysis of the data on the charged multiplicity density in AA collisions we find that the meson–baryon Fock component reduces the required fraction of binary collisions by a factor of ~2 for Au + Au collisions at √s = 0.2 TeV and ~1.5 for Pb + Pb collisions at √s = 2.76 TeV. For central AA collisions, the meson cloud can increase the multiplicity density by ~16–18%. We give predictions for the midrapidity charged multiplicity density in Pb + Pb collisions at √s = 5.02 TeV for the future LHC run 2. We find that the meson cloud has a weak effect on the centrality dependence of the ellipticity ϵ2 in AA collisions. For collisions of the deformed uranium nuclei at √s = 0.2 TeV, we find that the meson cloud may improve somewhat agreement with the data on the dependence of the elliptic flow on the charged multiplicity for very small centralities defined via the ZDCs signals. We find that the meson cloud may lead to a noticeable reduction of ϵ2 and the size of the fireball in pA and pp collisions.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Huovinen, Int. J. Mod. Phys. E 22, 1330029 (2013); arXiv:1311.1849.ADSCrossRefGoogle Scholar
  2. 2.
    R. Derradi de Souza, T. Koide, and T. Kodama, Prog. Part. Nucl. Phys. 86, 35 (2016); arXiv:1506.03863.ADSCrossRefGoogle Scholar
  3. 3.
    U. Heinz and R. Snellings, Ann. Rev. Nucl. Part. Sci. 63, 123 (2013); arXiv:1301.2826.ADSCrossRefGoogle Scholar
  4. 4.
    H. Song, S. A. Bass, U. Heinz, and T. Hirano, Phys. Rev. C 83, 054910 (2011); Phys. Rev. C 86, 059903(E) (2012); arXiv:1101.4638.ADSCrossRefGoogle Scholar
  5. 5.
    B. Schenke, P. Tribedy, and R. Venugopalan, Phys. Rev. Lett. 108, 252301 (2012); arXiv:1202.6646.ADSCrossRefGoogle Scholar
  6. 6.
    B. Schenke, P. Tribedy, and R. Venugopalan, Phys. Rev. C 86, 034908 (2012); arXiv:1206.6805.ADSCrossRefGoogle Scholar
  7. 7.
    A. Bialas, M. Bleszynski, and W. Czyz, Nucl. Phys. B 111, 461 (1976).ADSCrossRefGoogle Scholar
  8. 8.
    D. Kharzeev and M. Nardi, Phys. Lett. B 507, 121 (2001); nucl-th/0012025.ADSCrossRefGoogle Scholar
  9. 9.
    L. D. McLerran and R. Venugopalan, Phys. Rev. D 49, 2233 (1994); hep-ph/9309289.ADSCrossRefGoogle Scholar
  10. 10.
    N. N. Nikolaev and B. G. Zakharov, Z. Phys. C 49, 607 (1991); Z. Phys. C 53, 331 (1992).CrossRefGoogle Scholar
  11. 11.
    V. Barone, M. Genovese, N. N. Nikolaev, E. Predazzi, and B. G. Zakharov, Z. Phys. C 58, 541 (1993).ADSCrossRefGoogle Scholar
  12. 12.
    N. N. Nikolaev and B. G. Zakharov, Phys. Lett. B 332, 184 (1994); hep-ph/9403243.ADSCrossRefGoogle Scholar
  13. 13.
    F. E. Low, Phys. Rev. D 12, 163 (1975).ADSCrossRefGoogle Scholar
  14. 14.
    E. V. Shuryak, Rev. Mod. Phys. 65, 1 (1993).ADSCrossRefGoogle Scholar
  15. 15.
    A. Casher, H. Neuberger, and S. Nussinov, Phys. Rev. D 20, 179 (1979).ADSCrossRefGoogle Scholar
  16. 16.
    E. Gotsman and S. Nussinov, Phys. Rev. D 22, 624 (1980).ADSCrossRefGoogle Scholar
  17. 17.
    N. N. Nikolaev, B. G. Zakharov, and V. R. Zoller, JETP Lett. 59, 6 (1994); hep-ph/9312268.ADSGoogle Scholar
  18. 18.
    N. N. Nikolaev and B. G. Zakharov, Phys. Lett. B 327, 149 (1994); hep-ph/9402209.ADSCrossRefGoogle Scholar
  19. 19.
    R. Fiore, N. N. Nikolaev, and V. R. Zoller, JETP Lett. 99, 363 (2014); arXiv:1403.1950.ADSCrossRefGoogle Scholar
  20. 20.
    A. Bialas and M. Jezabek, Phys. Lett. B 590, 233 (2004); hep-ph/0403254.ADSCrossRefGoogle Scholar
  21. 21.
    A. Bialas, A. Bzdak, and R. Peschanski, Phys. Lett. B 665, 35 (2008); arXiv:0804.2364.ADSCrossRefGoogle Scholar
  22. 22.
    A. Bzdak, Acta Phys. Polon. B 41, 2471 (2010); arXiv:0906.2858.Google Scholar
  23. 23.
    B. Alver, M. Baker, C. Loizides, and P. Steinberg, arXiv:0805.4411.Google Scholar
  24. 24.
    W. Broniowski, M. Rybczynski, and P. Bozek, Comput. Phys. Commun. 180, 69 (2009); arXiv:0710.5731.ADSCrossRefGoogle Scholar
  25. 25.
    M. Rybczynski, G. Stefanek, W. Broniowski, and P. Bozek, Comput. Phys. Commun. 185, 1759 (2014); arXiv:1310.5475.ADSCrossRefGoogle Scholar
  26. 26.
    B. B. Back et al. (PHOBOS Collab.), Phys. Rev. C 70, 021902 (2004); nucl-ex/0405027.ADSCrossRefGoogle Scholar
  27. 27.
    B. I. Abelev, et al. (STAR Collab.), Phys. Rev. C 79, 034909 (2009); arXiv:0808.2041.ADSCrossRefGoogle Scholar
  28. 28.
    M. Rybczynski and W. Broniowski; arXiv:1510.08242.Google Scholar
  29. 29.
    L. Adamczyk et al. (STAR Collab.), Phys. Rev. Lett. 115, 222301 (2015); arXiv:1505.07812.ADSCrossRefGoogle Scholar
  30. 30.
    P. Filip, R. Lednicky, H. Masui, and N. Xu, Phys. Rev. C 80, 054903 (2009).ADSCrossRefGoogle Scholar
  31. 31.
    S. A. Voloshin, Phys. Rev. Lett. 105, 172301 (2010); arXiv:1006.1020.ADSCrossRefGoogle Scholar
  32. 32.
    J. S. Moreland, J. E. Bernhard, and S. A. Bass, Phys. Rev. C 92, 011901 (2015); arXiv:1412.4708.ADSCrossRefGoogle Scholar
  33. 33.
    S. Chatterjee et al., Phys. Lett. B 758, 269 (2016); arXiv:1510.01311.ADSCrossRefGoogle Scholar
  34. 34.
    A. Bialas, W. Czyz, and W. Furmanski, Acta Phys. Polon. B 8, 585 (1977).Google Scholar
  35. 35.
    A. Bialas and W. Czyz, Acta Phys. Polon. B 10, 831 (1979).Google Scholar
  36. 36.
    P. Bozek, W. Broniowski, and M. Rybczynski; arXiv:1604.07697.Google Scholar
  37. 37.
    A. Bialas and A. Bzdak, Phys. Rev. C 77, 034908 (2008); arXiv:0707.3720.ADSCrossRefGoogle Scholar
  38. 38.
    S. Eremin and S. Voloshin, Phys. Rev. C 67, 064905 (2003); nucl-th/0302071.ADSCrossRefGoogle Scholar
  39. 39.
    C. Loizides, arXiv:1603.07375.Google Scholar
  40. 40.
    S. S. Adler et al. (PHENIX Collab.), Phys. Rev. C 89, 044905 (2014); arXiv:1312.6676.ADSCrossRefGoogle Scholar
  41. 41.
    J. Speth and A. W. Thomas, Adv. Nucl. Phys. 24, 83 (1997).Google Scholar
  42. 42.
    S. D. Drell and K. Hiida, Phys. Rev. Lett. 7, 199 (1961).ADSCrossRefGoogle Scholar
  43. 43.
    R. T. Deck, Phys. Rev. Lett. 13, 169 (1964).ADSCrossRefGoogle Scholar
  44. 44.
    A. B. Kaidalov, Phys. Rep. 50, 157 (1979).ADSCrossRefGoogle Scholar
  45. 45.
    M. L. Good and W. D. Walker, Phys. Rev. 120, 1857 (1960).ADSCrossRefGoogle Scholar
  46. 46.
    K. G. Boreskov, A. B. Kaidalov, and L. A. Ponomarev, Sov. J. Nucl. Phys. 17, 669 (1973); Sov. J. Nucl. Phys. 19, 514 (1974).Google Scholar
  47. 47.
    K. G. Boreskov, A. A. Grigorian, and A. B. Kaidalov, Sov. J. Nucl. Phys. 24, 411 (1976).Google Scholar
  48. 48.
    B. G. Zakharov and V. N. Sergeev, Sov. J. Nucl. Phys. 38, 947 (1983).Google Scholar
  49. 49.
    B. G. Zakharov and V. N. Sergeev, Sov. J. Nucl. Phys. 28, 689 (1978).Google Scholar
  50. 50.
    V. N. Gribov, Sov. Phys. JETP 29, 483 (1969).ADSGoogle Scholar
  51. 51.
    A. Kaidalov, Nucl. Phys. A 525, 39 (1991).ADSCrossRefGoogle Scholar
  52. 52.
    K. Aamodt et al. (ALICE Collab.), Phys. Rev. Lett. 106, 032301 (2011); arXiv:1012.1657.ADSCrossRefGoogle Scholar
  53. 53.
    B. G. Zakharov, JETP Lett. 104, 6 (2016); arXiv:1605. 06012.ADSCrossRefGoogle Scholar
  54. 54.
    V. R. Zoller, Z. Phys. C 60, 141 (1993).ADSCrossRefGoogle Scholar
  55. 55.
    V. R. Zoller, Z. Phys. C 53, 443 (1992).ADSCrossRefGoogle Scholar
  56. 56.
    W. Melnitchouk, J. Speth, and A. W. Thomas, Phys. Rev. D 59, 014033 (1998); hep-ph/9806255.ADSCrossRefGoogle Scholar
  57. 57.
    H. Holtmann, A. Szczurek, and J. Speth, Nucl. Phys. A 596, 631 (1996); hep-ph/9601388.ADSCrossRefGoogle Scholar
  58. 58.
    J. D. Sullivan, Phys. Rev. D 5, 1732 (1972).ADSCrossRefGoogle Scholar
  59. 59.
    A. Szczurek and J. Speth, Nucl. Phys. A 555, 249 (1993).ADSCrossRefGoogle Scholar
  60. 60.
    A. B. Kaidalov and M. G. Poghosyan, Eur. Phys. J. C 67, 397 (2010); arXiv:0910.2050.ADSCrossRefGoogle Scholar
  61. 61.
    A. Capella and E. G. Ferreiro, Eur. Phys. J. C 72, 1936 (2012); arXiv:1110.6839.ADSCrossRefGoogle Scholar
  62. 62.
    B. Müller and K. Rajagopal, Eur. Phys. J. C 43, 15 (2005); hep-ph/0502174.ADSCrossRefGoogle Scholar
  63. 63.
    W. Broniowski and W. Florkowski, Phys. Rev. C 65, 024905 (2002); nucl-th/0110020.ADSCrossRefGoogle Scholar
  64. 64.
    D. Teaney and L. Yan, Phys. Rev. C 83, 064904 (2011); arXiv:1010.1876.ADSCrossRefGoogle Scholar
  65. 65.
    E. Retinskaya, M. Luzum, J.-Y. Ollitrault, Nucl. Phys. A 926, 152 (2014); arXiv:1401.3241.ADSCrossRefGoogle Scholar
  66. 66.
    C. Albajar et al. (UA1 Collab.), Nucl. Phys. B 335, 261 (1990).ADSCrossRefGoogle Scholar
  67. 67.
    J. Adam et al. (ALICE Collab.); arXiv:1509.07541.Google Scholar
  68. 68.
    B. Abelev et al. (ALICE Collab.), Eur. Phys. J. C 73, 2456 (2013); arXiv:1208.4968.ADSCrossRefGoogle Scholar
  69. 69.
    R. E. Ansorge et al. (UA5 Collab.), Z. Phys. C 43, 357 (1989).ADSGoogle Scholar
  70. 70.
    M. Rybczynski, W. Broniowski, and G. Stefanek, Phys. Rev. C 87, 044908 (2013); arXiv:1211.2537.ADSCrossRefGoogle Scholar
  71. 71.
    A. Goldschmidt, Z. Qiu, C. Shen, and U. Heinz; arXiv:1502.00603.Google Scholar
  72. 72.
    H. Niemi, G. S. Denicol, H. Holopainen, and P. Huovinen, Phys. Rev. C 87, 054901 (2013); arXiv:1212.1008.ADSCrossRefGoogle Scholar
  73. 73.
    Z. Qiu and U. W. Heinz, Phys. Rev. C 84, 024911 (2011); arXiv:1104.0650.ADSCrossRefGoogle Scholar
  74. 74.
    A. Goldschmidt, Z. Qiu, C. Shen, and U. Heinz, Phys. Rev. C 92, 044903 (2015); arXiv:1507.03910.ADSCrossRefGoogle Scholar
  75. 75.
    A. J. Kuhlman and U. W. Heinz, Phys. Rev. C 72, 037901 (2005); nucl-th/0506088.ADSCrossRefGoogle Scholar
  76. 76.
    E. V. Shuryak, Phys. Lett. B 78, 150 (1978).ADSCrossRefGoogle Scholar
  77. 77.
    S. Chatrchyan et al. (CMS Collab.), Phys. Lett. B 718, 795 (2013); arXiv:1210.5482.ADSCrossRefGoogle Scholar
  78. 78.
    B. Abelev et al. (ALICE Collab.), Phys. Lett. B 719, 29 (2013); arXiv:1212.2001.ADSCrossRefGoogle Scholar
  79. 79.
    G. Aad et al. (ATLAS Collab.), Phys. Rev. Lett. 110, 182302 (2013); arXiv:1212.5198.ADSCrossRefGoogle Scholar
  80. 80.
    S. Chatrchyan et al. (CMS Collab.), J. High Energy Phys. 1009, 091 (2010); arXiv:1009.4122.Google Scholar
  81. 81.
    B. G. Zakharov, Phys. Rev. Lett. 112, 032301 (2014); arXiv:1307.3674.ADSCrossRefGoogle Scholar
  82. 82.
    B. G. Zakharov, J. Phys. G 41, 075008 (2014); arXiv:1311.1159.ADSCrossRefGoogle Scholar
  83. 83.
    W. Broniowski, P. Bozek, M. Rybczynski, and E. R. Arriola, Acta Phys. Polon. Supp. 8, 301 (2015); arXiv:1506.04362.CrossRefGoogle Scholar
  84. 84.
    P. Bozek, Acta Phys. Polon. B 41, 837 (2010); arXiv:0911.2392.Google Scholar
  85. 85.
    M. Habich, G. A. Miller, and P. Romatschke, Eur. Phys. J. C 76, 408 (2016); arXiv:1512.05354.ADSCrossRefGoogle Scholar
  86. 86.
    J. Adam et al. (ALICE Collab.), Phys. Rev. C 91, 064905 (2015); arXiv:1412.6828.ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2017

Authors and Affiliations

  1. 1.Landau Institute for Theoretical PhysicsRussian Academy of SciencesChernogolovka, Moscow oblastRussia

Personalised recommendations