Advertisement

Dynamics of straight vortex filaments in a Bose–Einstein condensate with the Gaussian density profile

  • V. P. Ruban
Order, Disorder, and Phase Transition in Condensed System

Abstract

The dynamics of interacting quantized vortex filaments in a rotating Bose–Einstein condensate existing in the Thomas–Fermi regime at zero temperature and obeying the Gross–Pitaevskii equation has been considered in the hydrodynamic “nonelastic” approximation. A noncanonical Hamilton equation of motion for the macroscopically averaged vorticity has been derived for a smoothly inhomogeneous array of filaments (vortex lattice) taking into account spatial nonuniformity of the equilibrium density of the condensate, which is determined by the trap potential. The minimum of the corresponding Hamiltonian describes the static configuration of the deformed vortex lattice against the preset density background. The condition of minimum can be reduced to a nonlinear second-order partial differential vector equation for which some exact and approximate solutions are obtained. It has been shown that if the condensate density has an anisotropic Gaussian profile, the equation of motion for the averaged vorticity has solutions in the form of a vector exhibiting a nontrivial time dependence, but homogeneous in space. An integral representation has also been obtained for the matrix Green function that determines the nonlocal Hamiltonian of a system of several quantized vortices of an arbitrary shape in a Bose–Einstein condensate with the Gaussian density. In particular, if all filaments are straight and oriented along one of the principal axes of the ellipsoid, we have a finitedimensional reduction that can describe the dynamics of the system of pointlike vortices against an inhomogeneous background. A simple approximate expression is proposed for the 2D Green function with an arbitrary density profile and is compared numerically with the exact result in the Gaussian case. The corresponding approximate equations of motion, describing the long-wavelength dynamics of interacting vortex filaments in condensates with a density depending only on transverse coordinates, have been derived.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. A. Svidzinsky and A. L. Fetter, Phys. Rev. A 62, 063617 (2000).ADSCrossRefGoogle Scholar
  2. 2.
    A. L. Fetter and A. A. Svidzinsky, J. Phys.: Condens. Matter 13, R135 (2001).ADSGoogle Scholar
  3. 3.
    A. L. Fetter, Rev. Mod. Phys. 81, 647 (2009).ADSCrossRefGoogle Scholar
  4. 4.
    J. R. Anglin, Phys. Rev. A 65, 063611 (2002).ADSCrossRefGoogle Scholar
  5. 5.
    D. E. Sheehy and L. Radzihovsky, Phys. Rev. A 70, 063620 (2004).ADSCrossRefGoogle Scholar
  6. 6.
    A. Recati, F. Zambelli, and S. Stringari, Phys. Rev. Lett. 86, 377 (2001).ADSCrossRefGoogle Scholar
  7. 7.
    S. Sinha and Yv. Castin, Phys. Rev. Lett. 87, 190402 (2001).ADSCrossRefGoogle Scholar
  8. 8.
    A. Aftalion and T. Riviere, Phys. Rev. A 64, 043611 (2001).ADSCrossRefGoogle Scholar
  9. 9.
    J. Garcia-Ripoll and V. Perez-Garcia, Phys. Rev. A 64, 053611 (2001).ADSCrossRefGoogle Scholar
  10. 10.
    P. Rosenbusch, V. Bretin, and J. Dalibard, Phys. Rev. Lett. 89, 200403 (2002).ADSCrossRefGoogle Scholar
  11. 11.
    A. Aftalion and I. Danaila, Phys. Rev. A 68, 023603 (2003).ADSCrossRefGoogle Scholar
  12. 12.
    A. Aftalion and I. Danaila, Phys. Rev. A 69, 033608 (2004).ADSCrossRefGoogle Scholar
  13. 13.
    I. Danaila, Phys. Rev. A 72, 013605 (2005).ADSCrossRefGoogle Scholar
  14. 14.
    A. Fetter, Phys. Rev. A 69, 043617 (2004).ADSCrossRefGoogle Scholar
  15. 15.
    T.-L. Horng, S.-C. Gou, and T.-C. Lin, Phys. Rev. A 74, 041603 (2006).ADSCrossRefGoogle Scholar
  16. 16.
    E. A. Kuznetsov and V. P. Ruban, JETP Lett. 67, 1076 (1998).ADSCrossRefGoogle Scholar
  17. 17.
    V. P. Ruban, Phys. Rev. E 64, 036305 (2001).ADSCrossRefGoogle Scholar
  18. 18.
    V. P. Ruban, Phys. Rev. E 68, 047302 (2003).ADSCrossRefGoogle Scholar
  19. 19.
    V. P. Ruban, JETP Lett. 103, 780 (2016).ADSCrossRefGoogle Scholar
  20. 20.
    V. P. Ruban, JETP Lett. 104, 868 (2016).ADSCrossRefGoogle Scholar
  21. 21.
    I. Coddington, P. Engels, V. Schweikhard, and E. A. Cornell, Phys. Rev. Lett. 91, 100402 (2003).ADSCrossRefGoogle Scholar
  22. 22.
    G. Baym, Phys. Rev. Lett. 91, 110402 (2003).ADSCrossRefGoogle Scholar
  23. 23.
    L. O. Baksmaty, S. J. Woo, S. Choi, and N. P. Bigelow, Phys. Rev. Lett. 92, 160405 (2004).ADSCrossRefGoogle Scholar
  24. 24.
    S. A. Gifford and G. Baym, Phys. Rev. A 70, 033602 (2004).ADSCrossRefGoogle Scholar
  25. 25.
    E. B. Sonin, Phys. Rev. A 71, 011603(R) (2005).ADSCrossRefGoogle Scholar
  26. 26.
    G. Baym, C. J. Pethick, S. A. Gifford, and G. Watanabe, Phys. Rev. A 75, 013602 (2007).ADSCrossRefGoogle Scholar
  27. 27.
    E. B. Sonin, JETP Lett. 98, 758 (2013).ADSCrossRefGoogle Scholar
  28. 28.
    P. J. Torres, P. G. Kevrekidis, D. J. Frantzeskakis, et al., Phys. Lett. A 375, 3044 (2011).ADSCrossRefGoogle Scholar
  29. 29.
    S. Middelkamp, P. J. Torres, P. G. Kevrekidis, et al., Phys. Rev. A 84, 011605(R) (2011).ADSCrossRefGoogle Scholar
  30. 30.
    R. Navarro, R. Carretero-Gonzalez, P. J. Torres, et al., Phys. Rev. Lett. 110, 225301 (2013).ADSCrossRefGoogle Scholar
  31. 31.
    B. Y. Rubinstein and L. M. Pismen, Physica D 78, 1 (1994).ADSMathSciNetCrossRefGoogle Scholar
  32. 32.
    S. Giorgini, L. P. Pitaevskii, and S. Stringari, Rev. Mod. Phys. 80, 1215 (2008).ADSCrossRefGoogle Scholar
  33. 33.
    A. Bulgac, Y.-L. Luo, P. Magierski, et al., Science 332, 1288 (2011).ADSCrossRefGoogle Scholar
  34. 34.
    A. Bulgac, M. M. Forbes, M. M. Kelley, et al., Phys. Rev. Lett. 112, 025301 (2014).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2017

Authors and Affiliations

  1. 1.Landau Institute for Theoretical PhysicsRussian Academy of SciencesChernogolovka, Moscow oblastRussia

Personalised recommendations