Advertisement

On the analytical properties of the magneto-conductivity in the case of presence of stable open electron trajectories on a complex Fermi surface

  • A. Ya. Maltsev
Electronic Properties of Solid

Abstract

We consider the electric conductivity in normal metals in presence of a strong magnetic field. It is assumed here that the Fermi surface of a metal has rather complicated form such that different types of quasiclassical electron trajectories can appear on the Fermi level for different directions of B. The effects we consider are connected with the existence of regular (stable) open electron trajectories which arise in general on complicated Fermi surfaces. The trajectories of this type have a nice geometric description and represent quasiperiodic lines with a fixed mean direction in the p-space. Being stable geometric objects, the trajectories of this kind exist for some open regions in the space of directions of B, which can be represented by “Stability Zones” on the unit sphere S2. The main goal of the paper is to give a description of the analytical behavior of conductivity in the Stability Zones, which demonstrates in general rather nontrivial properties.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. A. Abrikosov, Fundamentals of the Theory of Metals (Elsevier Science Technol., Oxford, UK, 1988).Google Scholar
  2. 2.
    V. I. Arnol’d, Function. Anal. Appl. 25, 81 (1991).CrossRefGoogle Scholar
  3. 3.
    R. de Leo, Russ. Math. Surv. 55, 166 (2000).CrossRefGoogle Scholar
  4. 4.
    R. de Leo, Russ. Math. Surv. 58, 1042 (2003).CrossRefGoogle Scholar
  5. 5.
    R. de Leo, Exp. Math. 15, 109 (2006).CrossRefGoogle Scholar
  6. 6.
    R. de Leo and I. A. Dynnikov, Russ. Math. Surv. 62, 990 (2007).CrossRefGoogle Scholar
  7. 7.
    R. de Leo and I. A. Dynnikov, Geom. Dedicata 138, 51 (2009).MathSciNetCrossRefGoogle Scholar
  8. 8.
    I. A. Dynnikov, Math. Notes 53, 495 (1993).MathSciNetCrossRefGoogle Scholar
  9. 9.
    I. A. Dynnikov, in Solitons, Geometry, and Topology: On the Crossroad, Vol. 179 of Am. Math. Soc. Transl., Ser. 2 (Am. Math. Soc., Providence, RI, 1997), p. 45.MATHGoogle Scholar
  10. 10.
    I. A. Dynnikov, Russ. Math. Surv. 54, 21 (1999).MathSciNetCrossRefGoogle Scholar
  11. 11.
    I. A. Dynnikov, Proc. Steklov Inst. Math. 263, 65 (2008).MathSciNetCrossRefGoogle Scholar
  12. 12.
    I. Dynnikov and A. Skripchenko, in Topology, Geometry, Integrable Systems, and Mathematical Physics: Novikov’s Seminar 2012–2014, Vol. 234 of Adv. Math. Sci., Am. Math. Soc. Transl., Ser. 2, Ed. by V. M. Buchstaber, B. A. Dubrovin, and I. M. Krichever (Am. Math. Soc., Providence, RI, 2014), p. 173, arXiv:1309.4884Google Scholar
  13. 13.
    A. Ya. Hinchin, Continued Fractions (Fizmatgiz, Moscow, 1961) [in Russian].Google Scholar
  14. 14.
    M. I. Kaganov and V. G. Peschansky, Phys. Rep. 372, 445 (2002).ADSCrossRefGoogle Scholar
  15. 15.
    C. Kittel, Quantum Theory of Solids (Wiley, New York, 1963).MATHGoogle Scholar
  16. 16.
    I. M. Lifshitz, M. Ya. Azbel, and M. I. Kaganov, Sov. Phys. JETP 4, 41 (1957).Google Scholar
  17. 17.
    I. M. Lifshitz and V. G. Peschansky, Sov. Phys. JETP 8, 875 (1959).Google Scholar
  18. 18.
    I. M. Lifshitz and V. G. Peschansky, Sov. Phys. JETP 11, 137 (1960).Google Scholar
  19. 19.
    I. M. Lifshitz and M. I. Kaganov, Sov. Phys. Usp. 2, 831 (1960).ADSCrossRefGoogle Scholar
  20. 20.
    I. M. Lifshitz and M. I. Kaganov, Sov. Phys. Usp. 5, 878 (1963).ADSCrossRefGoogle Scholar
  21. 21.
    I. M. Lifshitz and M. I. Kaganov, Sov. Phys. Usp. 8, 805 (1966).ADSCrossRefGoogle Scholar
  22. 22.
    I. M. Lifshitz, M. Ya. Azbel, and M. I. Kaganov, Electron Theory of Metals (Nauka, Moscow, 1971; Consultants Bureau, New York, 1973).Google Scholar
  23. 23.
    A. Y. Maltsev, J. Exp. Theor. Phys. 85, 934 (1997).ADSCrossRefGoogle Scholar
  24. 24.
    A. Ya. Maltsev and S. P. Novikov, Bull. Braz. Math. Soc., New Ser. 34, 171 (2003).CrossRefGoogle Scholar
  25. 25.
    A. Ya. Maltsev and S. P. Novikov, J. Stat. Phys. 115, 31 (2004).ADSCrossRefGoogle Scholar
  26. 26.
    S. P. Novikov, Russ. Math. Surv. 37, 1 (1982).CrossRefGoogle Scholar
  27. 27.
    S. P. Novikov and A. Y. Maltsev, JETP Lett. 63, 855 (1996).ADSCrossRefGoogle Scholar
  28. 28.
    S. P. Novikov and A. Y. Maltsev, Phys. Usp. 41, 231 (1998).ADSCrossRefGoogle Scholar
  29. 29.
    T. Osada, S. Kagoshima, and N. Miura, Phys. Rev. B 46, 1812 (1992).ADSCrossRefGoogle Scholar
  30. 30.
    Ya. G. Sinai and K. M. Khanin, Function. Anal. Appl. 26, 155 (1992).CrossRefGoogle Scholar
  31. 31.
    A. Skripchenko, Discrete Contin. Dyn. Sys. 32, 643 (2012).MathSciNetCrossRefGoogle Scholar
  32. 32.
    A. Skripchenko, Ann. Glob. Anal. Geom. 43, 253 (2013).MathSciNetCrossRefGoogle Scholar
  33. 33.
    S. P. Tsarev, Private Commun. (1992–1993).Google Scholar
  34. 34.
    J. M. Ziman, Principles of the Theory of Solids (Cambridge Univ. Press, Cambridge, 1972).CrossRefMATHGoogle Scholar
  35. 35.
    A. V. Zorich, Russ. Math. Surv. 39, 287 (1984).CrossRefGoogle Scholar
  36. 36.
    A. V. Zorich, in Proceedings of the Conference on Geometric Study of Foliations, Tokyo, November 1993, Ed. by T. Mizutani et al. (World Scientific, Singapore, 1994), p. 479.Google Scholar
  37. 37.
    We do not consider here the spin variables, which will not play an essential role in our picture.Google Scholar
  38. 38.
    We would like to emphasize here that for generic Fermi level ϵF the measure of the stable open trajectories on the Fermi surface remains finite up to the boundary of the “mathematical Stability Zone” Ωα. However, it is often assumed in the literature that this measure vanishes at the boundary of a Stability Zone on the angle diagram, which seems to be in accordance with experimental data. As we will see below, the last circumstance is caused by the existence of an extended “experimentally observable” Stability Zone \({\hat \Omega _\alpha }\) including an additional region Λα, adjacent to the boundary of Ωα, with very special behavior of trajectories of system (I.1). It will be also shown, that the presence of additional Zone Λα is responsible also for arising of rather nontrivial analytical regimes of conductivity behavior in the extended Zone \({\hat \Omega _\alpha }\) .Google Scholar
  39. 39.
    Let us say here that the presence of additional segments adjacent to the Stability Zone on the angle diagram and corresponding to the presence of periodic open trajectories on the Fermi surface was discussed in the literature (see e. g. [14, 17–22]). It is usually assumed, however, that this set is given by a finite number of segments, corresponding to some special (main) rational directions a. We would like to emphasize here that the additional segments arise for every curve γa α ⊂ Ωα connected with a rational mean direction of open trajectories of (I.1). As a result, these segments form a dense set near the boundary of Ωα, which plays an important role in the formation of additional “experimentally observable” Zone Λα around the exact mathematical Stability Zone Ωα.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2017

Authors and Affiliations

  1. 1.Landau Institute for Theoretical PhysicsChernogolovkaRussia

Personalised recommendations