Properties of strained TaS3 samples in the state of charge density wave and in the normal state

  • S. G. Zybtsev
  • V. Ya. PokrovskiiEmail author
  • O. M. Zhigalina
  • D. N. Khmelenin
  • D. Starešinić
  • S. Šturm
  • E. Tchernychova
Electronic Properties of Solid


The uniaxial strain of quasi-one-dimensional conductor whiskers of orthorhombic TaS3 at a strain higher than ε c ~ 0.8% leads to a sharp increase in the coherence of the properties of a charge density wave (CDW), which manifests itself in its motion in fields higher than threshold field E t . During uniaxial elongation, TaS3 is shown to exhibit the following unusual properties even in weak fields: Peierls transition temperature T P depends nonmonotonically on ε, one-dimensional fluctuations weaken near T P , and the coherence length of a charge density increases at T < T P . Investigations in fields higher than E t show that the ultracoherent properties of CDW exist in a wide temperature range and are retained when temperature increases up to T P . These properties of CDW make it possible to observe a sharp increase in E t near T P and an almost jumplike increase in E t at T < 90 K. The increase in E t at T P is explained by a decrease in the coherence volume of CDW because of a fluctuational suppression of the Peierls gap.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. W. Brill, in Handbook of Elastic Properties of Solids, Liquids, and Gases, Vol. 2: Elastic Properties of Solids: Theory, Elements and Compounds, Novel Materials, Alloys, and Building Materials, Ed. by M. Levy (Academic, San Diego, 2001), Chap. 10, p. 143.Google Scholar
  2. 2.
    V. Ya. Pokrovskii, S. G. Zybtsev, M. V. Nikitin, I. G. Gorlova, V. F. Nasretdinova, and S. V. Zaitsev-Zotov, Phys. Usp. 56, 29 (2013).ADSCrossRefGoogle Scholar
  3. 3.
    V. B. Preobrazhenskii, A. N. Taldenkov, and I. Yu. Kal’nova, JETP Lett. 40, 944 (1984).ADSGoogle Scholar
  4. 4.
    V. B. Preobrazhensky, A. N. Taldenkov, and S. Yu. Shabanov, Solid State Commun. 54, 1399 (1985).CrossRefGoogle Scholar
  5. 5.
    R. S. Lear, M. J. Skove, E. P. Stillwell, and J. W. Brill, Phys. Rev. B 29, 5656 (1984).ADSCrossRefGoogle Scholar
  6. 6.
    K. Das, M. Chung, M. J. Skove, and G. X. Tessema, Phys. Rev. B 52, 7915 (1995).ADSCrossRefGoogle Scholar
  7. 7.
    J. W. Brill and W. Roark, Phys. Rev. Lett. 53, 846 (1984).ADSCrossRefGoogle Scholar
  8. 8.
    L. C. Bourne, M. S. Sherwin, and A. Zettl, Phys. Rev. Lett. 56, 1952 (1986).ADSCrossRefGoogle Scholar
  9. 9.
    Z. G. Xu and J. W. Brill, Phys. Rev. B 45, 3953 (1992).ADSCrossRefGoogle Scholar
  10. 10.
    Z. G. Xu and J. W. Brill, Phys. Rev. B 43, 11037 (1991).ADSCrossRefGoogle Scholar
  11. 11.
    R. L. Jacobsen, M. B. Weissman, and G. Mozurkewich, Phys. Rev. B 43, 13198 (1991).ADSCrossRefGoogle Scholar
  12. 12.
    X.-D. Xiang and J. W. Brill, Phys. Rev. B 39, 1290 (1989).ADSCrossRefGoogle Scholar
  13. 13.
    X.-D. Xiang and J. W. Brill, Phys. Rev. B 36, 2969 (1987).ADSCrossRefGoogle Scholar
  14. 14.
    A. J. Rivero, H. R. Salva, A. A. Ghilarducci, P. Monceau, and F. Levy, Solid State Commun. 106, 13 (1998).ADSCrossRefGoogle Scholar
  15. 15.
    Sh. Sengupta, N. Samudrala, V. Singh, A. Thamizhavel, P. B. Littlewood, V. Tripathi, and M. M. Deshmukh, Phys. Rev. Lett. 110, 166403 (2013).ADSCrossRefGoogle Scholar
  16. 16.
    S. Hoen, B. Burk, A. Zettl, and M. Inui, Phys. Rev. B 46, 1874 (1992).ADSCrossRefGoogle Scholar
  17. 17.
    V. Ya. Pokrovskii, S. G. Zybtsev, and I. G. Gorlova, Phys. Rev. Lett. 98, 206404 (2007).ADSCrossRefGoogle Scholar
  18. 18.
    V. Ya. Pokrovskii, S. G. Zybtsev, V. B. Loginov, V. N. Timofeev, D. V. Kolesov, I. V. Yaminsky, and I. G. Gorlova, Physica B 404, 437 (2009).ADSCrossRefGoogle Scholar
  19. 19.
    S. G. Zybtsev and V. Ya. Pokrovskii, Physica B 460, 34 (2015).ADSCrossRefGoogle Scholar
  20. 20.
    M. V. Nikitin, V. Ya. Pokrovskii, and S. G. Zybtsev, in Proceedings of the 37th Workshop on Low Temperature Physics, Kazan’, June 29–July 3, 2015, p. 23.Google Scholar
  21. 21.
    S. G. Zybtsev and V. Ya. Pokrovskii, in Proceedings of the 12th Russian Conference on Semiconductor Physics, Ershovo, Sept. 21-–25, 2015 (Fiz. Inst. AN im. P. N. Lebedeva, Moscow, 2015), p. 58.Google Scholar
  22. 22.
    S. G. Zybtsev and V. Ya. Pokrovskii, arXiv:1602.08123 [cond-mat.str-el].Google Scholar
  23. 23.
    S. G. Zybtsev and V. Ya. Pokrovskii, Phys. Rev. B 94, 115140 (2016).ADSCrossRefGoogle Scholar
  24. 24.
    D. V. Borodin, S. V. Zaitsev-Zotov, and F. Ya. Nad’, Sov. Phys. JETP 66, 793 (1987).Google Scholar
  25. 25.
    S. G. Zybtsev, V. Ya. Pokrovskii, and S. V. Zaitsev-Zotov, Nat. Commun. (2010). doi 10.1038/ncomms1087Google Scholar
  26. 26.
    C. Roucau, J. Phys. (France) C3 44, 1725 (1983)Google Scholar
  27. 26a.
    Z. Z. Wang, H. Salva, P. Monceau, M. Renard, C. Roucau, R. Ayroles, F. Levy, L. Guemas, and A. Meerschaut, J. Phys. (Paris), Lett. 44, L311 (1983).CrossRefGoogle Scholar
  28. 27.
    K. Maki and A. Virosztek, Phys. Rev. B 33, 2852 (1986).ADSCrossRefGoogle Scholar
  29. 28.
    A. N. Taldenkov, private commun.Google Scholar
  30. 29.
    P. Monceau, Adv. Phys. 61, 325 (2012).ADSCrossRefGoogle Scholar
  31. 30.
    S. E. Brown and G. Gruner, Phys. Rev. B 31, 8302 (1985).ADSCrossRefGoogle Scholar
  32. 31.
    Gy. Hutiray and G. Mihály, in Lecture Notes in Physics, Ed. by Gy Hutiray and J. Solyom (Springer, Berlin, 1985), p. 434.Google Scholar
  33. 32.
    C. Noguera and J.-P. Pouget, J. Phys. I (Paris) 1, 1035 (1991).Google Scholar
  34. 33.
    S. N. Artemenko, V. Ya. Pokrovskii, and S. V. Zaitsev-Zotov, J. Exp. Theor. Phys. 83, 590 (1996).ADSGoogle Scholar
  35. 34.
    G. Grüner and A. Zettl, Phys. Rep. 119, 117 (1985).ADSCrossRefGoogle Scholar
  36. 35.
    P. Monceau, in Electronic Properties of Inorganic Quasi- One-Dimensional Compounds, Vol. 2: Physics and Chemistry of Materials with Low-Dimensional Structures, Ser. B, Ed. by P. Monceau (Reidel, Dordrecht, 1985), p. 139.Google Scholar
  37. 36.
    H. Salva, Z. Z. Wang, P. Monceau, J. Richard, and M. Renard, Philos. Mag. B 49, 385 (1984).ADSCrossRefGoogle Scholar
  38. 37.
    D. Dominko and D. Starešinic, J. Phys.: Condens. Matter 22, 055603 (2010)ADSGoogle Scholar
  39. 37a.
    D. Dominko, Doctoral Dissertation (Univ. of Zagreb, Zagreb, Croatia, 2012).Google Scholar
  40. 38.
    W. G. Lyons and J. R. Tucker, Phys. Rev. B 40, 1720 (1989).ADSCrossRefGoogle Scholar
  41. 39.
    S. N. Artemenko and A. F. Volkov, Sov. Phys. JETP 54, 992 (1981).Google Scholar
  42. 40.
    V. Ya. Pokrovskii and S. V. Zaitsev-Zotov, Synth. Met. 32, 321 (1989).CrossRefGoogle Scholar
  43. 41.
    N. P. Ong and K. Maki, Phys. Rev. B 32, 6582 (1985).ADSCrossRefGoogle Scholar
  44. 42.
    M. P. Maher, T. L. Adelman, S. Ramakrishna, J. P. McCarten, D. A. di Carlo, and R. E. Thorne, Phys. Rev. Lett. 68, 3084 (1992).ADSCrossRefGoogle Scholar
  45. 43.
    Yu. I. Latyshev, Ya. S. Savitskaya, and V. V. Frolov, JETP Lett. 38, 541 (1983).ADSGoogle Scholar
  46. 44.
    S. N. Artemenko, J. Phys. IV 12, Pr9–77 (2002).Google Scholar
  47. 45.
    P. A. Lee and T. M. Rice, Phys. Rev. B 19, 3970 (1979).ADSCrossRefGoogle Scholar
  48. 46.
    C. V. Zaitsev-Zotov, Phys. Usp. 47, 533 (2004).ADSCrossRefGoogle Scholar
  49. 47.
    V. Ya. Pokrovskii, A. V. Golovnya, and S. V. Zaitsev-Zotov, Phys. Rev. B 70, 113106 (2004).ADSCrossRefGoogle Scholar
  50. 48.
    B. Zawilski, J. Richard, and J. Marcus, Solid State Commun. 109, 41 (1999).ADSCrossRefGoogle Scholar
  51. 49.
    J. Dumas and C. Schlenker, Int. J. Mod. Phys. B 7, 4045 (1993).ADSCrossRefGoogle Scholar
  52. 50.
    B. Zawilski, J. Richard, J. Marcus, and J. Dumas, Phys. Rev. B 60, 4525 (1999).ADSCrossRefGoogle Scholar
  53. 51.
    B. Hennion, J. P. Pouget, and M. Sato, Phys. Rev. Lett. 68, 2374 (1992).ADSCrossRefGoogle Scholar
  54. 52.
    C. V. Zaitsev-Zotov, JETP Lett. 46, 572 (1987).ADSGoogle Scholar
  55. 53.
    M. E. Itkis, F. Ya. Nad’, P. Monceau, and M. Renard, J. Phys.: Condens. Matter 5, 431 (1993).Google Scholar
  56. 54.
    S. G. Zybtsev, V. Ya. Pokrovskii, V. F. Nasretdinova, S. V. Zaitsev-Zotov, V. V. Pavlovskiy, A. B. Odobesco, Woei Wu Pai, M.-W. Chu, Y. G. Lin, E. Zupanic, H. J. P. van Midden, S. Šturm, E. Tchernychova, A. Prodan, J. C. Bennett, I. R. Mukhamedshin, O. V. Chernysheva, A. P. Menushenkov, V. B. Loginov, B. A. Loginov, A. N. Titov, and Mahmoud Abdel-Hafiez, Phys. Rev. B 95, 035110 (2017).ADSCrossRefGoogle Scholar
  57. 55.
    C. V. Zaitsev-Zotov and V. E. Minakova, JETP Lett. 79, 550 (2004).ADSCrossRefGoogle Scholar
  58. 56.
    V. Ya. Pokrovskii and S. V. Zaitsev-Zotov, Synth. Met. 29, F439 (1989).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2017

Authors and Affiliations

  • S. G. Zybtsev
    • 1
  • V. Ya. Pokrovskii
    • 1
    Email author
  • O. M. Zhigalina
    • 2
  • D. N. Khmelenin
    • 2
  • D. Starešinić
    • 3
  • S. Šturm
    • 4
  • E. Tchernychova
    • 4
  1. 1.Kotel’nikov Institute of Radio Engineering and ElectronicsRussian Academy of SciencesMoscowRussia
  2. 2.Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics,”Russian Academy of SciencesMoscowRussia
  3. 3.Institute of PhysicsZagrebCroatia
  4. 4.National Institute of ChemistryLjubljanaSlovenia

Personalised recommendations