Advertisement

Dusty plasma in a glow discharge in helium in temperature range of 5–300 K

  • I. S. Samoilov
  • V. P. Baev
  • A. V. TimofeevEmail author
  • R. Kh. Amirov
  • A. V. Kirillin
  • V. S. Nikolaev
  • Z. V. Bedran
Statistical, Nonlinear, and Soft Matter Physics

Abstract

Dusty plasma structures in glow discharge in helium in the temperature range of 5–300 K are investigated experimentally. We have described the experimental setup that makes it possible to continuously vary the temperature regime. The method for experimental data processing has been described. We have measured interparticle distances in the temperature range of 9–295 K and compared them with the Debye radius. We indicate the ranges of variations in experimental parameters in which plasma–dust structures are formed and various types of their behavior are manifested (rotation, vibrations of structures, formation of vertical linear chains, etc.). The applicability of the Yukawa potential to the description of the structural properties of a dusty plasma in the experimental conditions is discussed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. F. Wuerker, H. Shelton, and R. V. Langmuir, J. Appl. Phys. 30, 342 (1959).ADSCrossRefGoogle Scholar
  2. 2.
    V. N. Tsytovich, Phys. Usp. 40, 53 (1997).ADSCrossRefGoogle Scholar
  3. 3.
    P. K. Shukla and A. A. Mamun, Introduction to Dusty Plasma Physics (IOP, Bristol, 2002).CrossRefGoogle Scholar
  4. 4.
    V. E. Fortov, A. G. Khrapak, S. A. Khrapak, V. I. Molotkov, and O. F. Petrov, Phys. Usp. 47, 447 (2004).ADSCrossRefGoogle Scholar
  5. 5.
    R. L. Merlino, AIP Conf. Proc. 799, 3 (2005).ADSCrossRefGoogle Scholar
  6. 6.
    Encyclopedy of Low-Temperature Plasma (Yanuk-K, Moscow, 2005), Vol. 1, pt. 2 [in Russian].Google Scholar
  7. 7.
    V. N. Tsytovich, G. Morfill, S. V. Vladimirov, and H. M. Thomas, Lect. Notes Phys., 731 (2008).Google Scholar
  8. 8.
    O. S. Vaulina, O. F. Petrov, V. E. Fortov, A. G. Khrapak, and S. A. Khrapak, Dusty Plasma: Experiment and Theory (Fizmatlit, Moscow, 2009) [in Russian].Google Scholar
  9. 9.
    V. E. Fortov and G. E. Morfill, Complex and DustyPlasmas from Laboratory to Space (CRC, London, 2012).Google Scholar
  10. 10.
    P. Jensen, Rev. Mod. Phys. 71, 1695 (1999).ADSCrossRefGoogle Scholar
  11. 11.
    N. M. Hwang, W. S. Cheong, D. Y. Yoon, and D. Y. Kim, J. Cryst. Growth 218, 33 (1999).ADSCrossRefGoogle Scholar
  12. 12.
    H. Kersten, R. Wiese, G. Thieme, M. Froehlich, A. Kopitov, D. Bojic, F. Scholze, H. Neumann, M. Quaas, H. Wullf, and R. Hippler, New. J. Phys. 5, 93 (2003).ADSCrossRefGoogle Scholar
  13. 13.
    C. K. Goertz, Rev. Geophys. 27, 271 (1989).ADSCrossRefGoogle Scholar
  14. 14.
    T. G. Northrop, Phys. Scripta 45, 475 (1992).ADSCrossRefGoogle Scholar
  15. 15.
    V. E. Fortov, A. P. Nefedov, O. F. Petrov, A. A. Samarian, A. V. Chernyschev, and A. M. Lipaev, JETP Lett. 63, 187 (1996).ADSCrossRefGoogle Scholar
  16. 16.
    V. E. Fortov, A. P. Nefedov, V. M. Torchinskii, V. I. Molotkov, et al., JETP Lett. 64, 92 (1996).ADSCrossRefGoogle Scholar
  17. 17.
    A. M. Lipaev, V. I. Molotkov, A. P. Nefedov, O. F. Petrov, et al., J. Exp. Theor. Phys. 85, 1110 (1997).ADSCrossRefGoogle Scholar
  18. 18.
    A. P. Nefedov, O. F. Petrov, V. I. Molotkov, and V. E. Fortov, JETP Lett. 72, 218 (2000).ADSCrossRefGoogle Scholar
  19. 19.
    A. V. Nedospasov, Sov. Phys. Usp. 11, 1 (1968).CrossRefGoogle Scholar
  20. 20.
    D. N. Polyakov, L. M. Vasilyak, and V. V. Shumova, Surf. Eng. Appl. Electrochem. 51, 2 (2015).CrossRefGoogle Scholar
  21. 21.
    V. V. Balabanov, L. M. Vasilyak, S. P. Vetchinin, A. P. Nefedov, D. N. Polyakov, and V. E. Fortov, J. Exp. Theor. Phys. 92, 86 (2001).ADSCrossRefGoogle Scholar
  22. 22.
    L. M. Vasilyak, S. P. Vetchinin, A. P. Nefedov, and D. N. Polyakov, High Temp. 38, 675 (2000).CrossRefGoogle Scholar
  23. 23.
    V. E. Fortov, L. M. Vasilyak, S. P. Vetchinin, V. S. Zimnukhov, A. P. Nefedov, and D. N. Polyakov, Dokl. Phys. 47, 21 (2002).ADSCrossRefGoogle Scholar
  24. 24.
    V. E. Fortov, A. G. Khrapak, S. A. Khrapak, V. I. Molotkov, and O. F. Petrov, Phys. Usp. 47, 447 (2004).ADSCrossRefGoogle Scholar
  25. 25.
    S. N. Antipov, M. M. Vasil’ev, S. A. Maiorov, O. F. Petrov, and V. E. Fortov, J. Exp. Theor. Phys. 112, 482 (2011).ADSCrossRefGoogle Scholar
  26. 26.
    S. N. Antipov, A. V. Kirillin, and V. L. Nizovskii, Cryogen Plasma of Gas Discharge (Yanus-K, Moscow, 2011) [in Russian].Google Scholar
  27. 27.
    K. Pearson, Proc. R. Soc. A 58, 240 (1895).CrossRefGoogle Scholar
  28. 28.
    S. N. Antipov, E. I. Asinovskii, A. V. Kirillin, S. A. Mayorov, V. V. Markovets, and O. F. Petrov, J. Exp. Theor. Phys. 106, 830 (2008).ADSCrossRefGoogle Scholar
  29. 29.
    S. N. Antipov, E. I. Asinovskii, V. E. Fortov, A.V. Kirillin, V. V. Markovets, O. F. Petrov, and V. I. Platonov, Phys. Plasmas 14, 4 (2007).CrossRefGoogle Scholar
  30. 30.
    S. N. Antipov, L. P. T. Schepers, M. M. Vasiliev, and O. F. Petrov, Contrib. Plasma Phys. 56, 296 (2016).ADSCrossRefGoogle Scholar
  31. 31.
    G. E. Norman, V. V. Stegailov, and A. V. Timofeev, J. Exp. Theor. Phys. 113, 887 (2011).ADSCrossRefGoogle Scholar
  32. 32.
    Yu. P. Raizer, Gas Discharge Physics (Springer, Berlin, 1991, Nauka, Moscow, 1987).Google Scholar
  33. 33.
    A. A. Markovets, Cand. Sci. (Phys. Math.) Dissertation (Inst. High Temp. Acad. Sci., Moscow, 1985).Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2017

Authors and Affiliations

  • I. S. Samoilov
    • 1
  • V. P. Baev
    • 1
  • A. V. Timofeev
    • 1
    • 3
    Email author
  • R. Kh. Amirov
    • 1
  • A. V. Kirillin
    • 1
  • V. S. Nikolaev
    • 1
    • 2
  • Z. V. Bedran
    • 1
    • 2
  1. 1.Joint Institute for High TemperaturesRussian Academy of SciencesMoscowRussia
  2. 2.Moscow Institute of Physics and Technology (State University)Dolgoprudnyi, Moscow oblastRussia
  3. 3.National Research University Higher School of EconomicsMoscowRussia

Personalised recommendations