Journal of Experimental and Theoretical Physics

, Volume 124, Issue 2, pp 265–274 | Cite as

Investigation on the formation of lonsdaleite from graphite

Solids and Liquids

Abstract

Structural stability and the possible pathways to experimental formation of lonsdaleite—a hexagonal 2H polytype of diamond—have been studied in the framework of the density functional theory (DFT). It is established that the structural transformation of orthorhombic Cmmm graphite to 2H polytype of diamond must take place at a pressure of 61 GPa, while the formation of lonsdaleite from hexagonal P6/mmm graphite must take place at 56 GPa. The minimum potential barrier height separating the 2H polytype state from graphite is only 0.003 eV/atom smaller than that for the cubic diamond. The high potential barrier is indicative of the possibility of stable existence of the hexagonal diamond under normal conditions. In this work, we have also analyzed the X-ray diffraction and electron-microscopic data available for nanodiamonds found in meteorite impact craters in search for the presence of hexagonal diamond. Results of this analysis showed that pure 3C and 2H polytypes are not contained in the carbon materials of impact origin, the structure of nanocrystals found representing diamonds with randomly packed layers. The term “lonsdaleite,” used to denote carbon materials found in meteorite impact craters and diamond crystals with 2H polytype structure, is rather ambiguous, since no pure hexagonal diamond has been identified in carbon phases found at meteorite fall sites.

References

  1. 1.
    C. Frondel and U. B. Marvin, Nature 214, 587 (1967).ADSCrossRefGoogle Scholar
  2. 2.
    F. P. Bundy and J. S. Kasper, J. Chem. Phys. 46, 3437 (1967).ADSCrossRefGoogle Scholar
  3. 3.
    R. E. Hanneman, H. M. Strong, and F. P. Bundy, Science 155, 995 (1967).ADSCrossRefGoogle Scholar
  4. 4.
    A. El Goresy, L. S. Dubrovinsky, P. Gillet, et al., C. R. Geosci. 335, 889 (2003).CrossRefGoogle Scholar
  5. 5.
    I. Israde-Alcantara, J. L. Bischoff, G. Dominguez-Vazquez, et al., Proc. Nat. Acad. Sci. USA 109, E738 (2012).ADSCrossRefGoogle Scholar
  6. 6.
    Y. Nakamuta and S. Toh, Am. Mineral. 98, 574 (2013).ADSCrossRefGoogle Scholar
  7. 7.
    H. Ohfuji, T. Irifune, K. D. Litasov, et al., Sci. Rep. 5, 14702 (2015).ADSCrossRefGoogle Scholar
  8. 8.
    P. Nemeth, L. A. J. Garvie, T. Aoki, et al., Nat. Comm. 5, 5447 (2014).ADSCrossRefGoogle Scholar
  9. 9.
    A. F. Goncharov, I. N. Makarenko, and S. M. Stishov, Sov. Phys. JETP 69, 380 (1989).Google Scholar
  10. 10.
    F. P. Bundy, W. A. Bassett, M. S. Weathers, et al., Carbon 34, 141 (1996).CrossRefGoogle Scholar
  11. 11.
    Y. Wang, J. E. Panzik, B. Kiefer, et al., Sci. Rep. 2, 520 (2012).ADSGoogle Scholar
  12. 12.
    E. A. Belenkov, M. M. Brzhezinskaya, and V. A. Greshnyakov, Diamond Relat. Mater. 50, 9 (2014).ADSCrossRefGoogle Scholar
  13. 13.
    E. A. Belenkov and V. A. Greshnyakov, J. Exp. Theor. Phys. 119, 101 (2014).ADSCrossRefGoogle Scholar
  14. 14.
    E. A. Belenkov and V. A. Greshnyakov, Phys. Solid State 57, 205 (2015).ADSCrossRefGoogle Scholar
  15. 15.
    P. A. Schultz, K. Leung, and E. B. Stechel, Phys. Rev. B 59, 733 (1999).ADSCrossRefGoogle Scholar
  16. 16.
    Q. Zhu, Q. Zeng, and A. R. Oganov, Phys. Rev. B 85, 201407(R) (2012).ADSCrossRefGoogle Scholar
  17. 17.
    C. Cheng, Z.-L. Lv, Y. Cheng, et al., Diamond Relat. Mater. 43, 49 (2014).ADSCrossRefGoogle Scholar
  18. 18.
    P. Giannozzi, S. Baroni, N. Bonini et al., J. Phys.: Condens. Matter. 21, 395502 (2009).Google Scholar
  19. 19.
    J. P. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981).ADSCrossRefGoogle Scholar
  20. 20.
    H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976).ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    Ya. S. Umanskii, Yu. A. Skakov, A. N. Ivanov, and L. N. Rastorguev, Crystallography, X-Ray Diffraction, Electronic Microscopy (Metallurgiya, Moscow, 1982) [in Russian].Google Scholar
  22. 22.
    H. O. Pierson, Handbook of Carbon, Graphite, Diamond, and Fullerenes: Properties, Processing, and Applications (Noyes, Park Ridge, 1993).Google Scholar
  23. 23.
    F. Kern and W. D. Walters, Proc. Natl. Acad. Sci. USA 38, 937 (1952).ADSCrossRefGoogle Scholar
  24. 24.
    H.-M. Hutmacher, H.-G. Fritz, and H. Musso, Angew. Chem. Int. Ed. Engl. 14, 180 (1975).CrossRefGoogle Scholar
  25. 25.
    V. Yu. Dolmatov, Russ. Chem. Rev. 76, 339 (2007).ADSCrossRefGoogle Scholar
  26. 26.
    A. V. Kurdyumov, V. G. Malogolovets, N. V. Novikov, A. N. Pilyankevich, and L. A. Shul’man, Polymorphic Modification of Carbon and Boron Nitride, The Handbook (Metallurgiya, Moscow, 1994) [in Russian].Google Scholar
  27. 27.
    C. G. Salzmann, B. J. Murray, and J. J. Shephard, Diamond Rel. Mater. 59, 69 (2015).ADSCrossRefGoogle Scholar
  28. 28.
    P. D. Ownby, Xi Yang, and J. Liu, J. Am. Ceram. Soc. 75, 1876 (1992).CrossRefGoogle Scholar
  29. 29.
    E. M. Baitinger, E. A. Belenkov, M. M. Brzhezinskaya, and V. A. Greshnyakov, Phys. Solid State 54, 1715 (2012).ADSCrossRefGoogle Scholar
  30. 30.
    V. K. Kis, T. Shumilova, and V. Masaitis, Phys. Chem. Minerals 43, 661 (2016).ADSCrossRefGoogle Scholar
  31. 31.
    E. A. Belenkov and E. N. Agalyamova, Vestn. Chelyab. Univ. 24 ((162), Fiz. 5), 13 (2009).Google Scholar
  32. 32.
    Y. Lifshitz, X. F. Duan, N. G. Shang, et al., Nature 412, 404 (2001).ADSCrossRefGoogle Scholar
  33. 33.
    A. Verma and P. Krishna, Polymorphism and Polytypism in Crystals (Wiley, New York, 1966).Google Scholar
  34. 34.
    I. A. Baburin, D. M. Proserpio, V. A. Saleev, and A. V. Shipilova, Phys. Chem. Chem. Phys. 17, 1332 (2015).CrossRefGoogle Scholar
  35. 35.
    V. A. Greshnyakov and E. A. Belenkov, Tech. Phys. 61, 1462 (2016).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2017

Authors and Affiliations

  1. 1.Chelyabinsk State UniversityChelyabinskRussia

Personalised recommendations