Advertisement

Journal of Experimental and Theoretical Physics

, Volume 123, Issue 6, pp 985–990 | Cite as

C60 fullerene decoration of carbon nanotubes

  • V. A. DeminEmail author
  • V. D. Blank
  • A. R. Karaeva
  • B. A. Kulnitskiy
  • V. Z. Mordkovich
  • Yu. N. Parkhomenko
  • I. A. Perezhogin
  • M. Yu. Popov
  • E. A. Skryleva
  • S. A. Urvanov
  • L. A. Chernozatonskii
Solids and Liquids
  • 79 Downloads

Abstract

A new fully carbon nanocomposite material is synthesized by the immersion of carbon nanotubes in a fullerene solution in carbon disulfide. The presence of a dense layer of fullerene molecules on the outer nanotube surface is demonstrated by TEM and XPS. Fullerenes are redistributed on the nanotube surface during a long-term action of an electron beam, which points to the existence of a molecular bond between a nanotube and fullerenes. Theoretical calculations show that the formation of a fullerene shell begins with the attachment of one C60 molecule to a defect on the nanotube surface.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. W. Kroto, J. R. Heath, S. C. O’Brien, et al., Nature 318, 162 (1985).ADSCrossRefGoogle Scholar
  2. 2.
    M. S. Dresselhaus, G. Dresselhaus, and Ph. Avouris, Top. Appl. Phys. 80 (2001).Google Scholar
  3. 3.
    B. W. Smith, M. Monthioux, and D. E. Luzzi, Nature 396, 323 (1998).ADSCrossRefGoogle Scholar
  4. 4.
    A. G. Nasibulin, P. V. Pikhitsa, H. Jiang, et al., Nat. Nanotechnol. 2, 156 (2007).ADSCrossRefGoogle Scholar
  5. 5.
    Ch. Girard, Ph. Lambin, A. Dereux, et al., Phys. Rev. B 49, 11425 (1994).ADSCrossRefGoogle Scholar
  6. 6.
    T. Umeyama, N. Tezuka, M. Fujita, et al., Chem. Eur. J. 14, 4875 (2008).CrossRefGoogle Scholar
  7. 7.
    N. Tezuka, T. Umeyama, S. Seki, et al., J. Phys. Chem. C 114, 3235 (2010).CrossRefGoogle Scholar
  8. 8.
    C. Li, Y. Chen, Y. Wang, et al., J. Mater. Chem. 17, 2406 (2007).CrossRefGoogle Scholar
  9. 9.
    P. W. Murray, M. O. Pedersen, E. L[ae]gsgaard, et al., Phys. Rev. B 55, 9360 (1997).ADSCrossRefGoogle Scholar
  10. 10.
    A. Hashimoto, H. Terasaki, A. Yamamoto, et al., Diamond Relat. Mater. 18, 388 (2009).ADSCrossRefGoogle Scholar
  11. 11.
    L. A. Chernozatonskii, A. A. Artukh, and V. A. Demin, JETP Lett. 95, 113 (2013).ADSCrossRefGoogle Scholar
  12. 12.
    A. R. Karaeva, M. A. Khaskov, E. B. Mitberg, et al., Fullerenes, Nanotubes, Carbon Nanostruct. 20, 411 (2012).ADSCrossRefGoogle Scholar
  13. 13.
    V. Z. Mordkovich, A. R. Karaeva, M. A. Khaskov, et al., RF Patent No. 2497752, Byull. Izobret., No. 31 (2013).Google Scholar
  14. 14.
    V. Esumi, A. Ishigami, A. Nakajimaet, et al., Carbon 34, 279 (1996).CrossRefGoogle Scholar
  15. 15.
    B. C. Satishkumar, A. Govindaraj, J. Mofokeng, et al., J. Phys. 29, 4925 (1996).ADSGoogle Scholar
  16. 16.
    V. Datsyuk, M. Kalyva, K. Papagelis, et al., Carbon 46, 833 (2008).CrossRefGoogle Scholar
  17. 17.
    A. V. Eletskii, Phys. Usp. 40, 899 (1997).ADSCrossRefGoogle Scholar
  18. 18.
    K. N. Semenov, N. A. Charykov, V. A. Keskinov, et al., J. Chem. Eng. Data 55, 13 (2010).CrossRefGoogle Scholar
  19. 19.
    S. Plimpton, J. Comput. Phys. 117, 1 (1995).ADSCrossRefGoogle Scholar
  20. 20.
    S. J. Stuart, A. B. Tutein, and J. A. Harrison, J. Chem. Phys. 112, 6472 (2000).ADSCrossRefGoogle Scholar
  21. 21.
    D. M. Poirier, J. H. Weaver, K. Kikuchi, et al., Z. Phys. D: At., Mol. Clust. 26, 79 (1993).ADSCrossRefGoogle Scholar
  22. 22.
    P. M. Ajayan, C. Colliex, P. Bernier, et al., Microsc. Microanal. Microstruct. 4, 501 (1993).CrossRefGoogle Scholar
  23. 23.
    F. Banhart, J. Kotakoski, and A. V. Krasheninnikov, ACS Nano 5, 26 (2011).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2016

Authors and Affiliations

  • V. A. Demin
    • 1
    Email author
  • V. D. Blank
    • 2
    • 3
    • 4
  • A. R. Karaeva
    • 2
  • B. A. Kulnitskiy
    • 2
    • 4
  • V. Z. Mordkovich
    • 2
    • 4
  • Yu. N. Parkhomenko
    • 3
  • I. A. Perezhogin
    • 2
    • 4
    • 5
  • M. Yu. Popov
    • 2
    • 3
    • 4
  • E. A. Skryleva
    • 3
  • S. A. Urvanov
    • 2
  • L. A. Chernozatonskii
    • 1
    • 6
  1. 1.Emanuel Institute of Biochemical PhysicsRussian Academy of SciencesMoscowRussia
  2. 2.Technological Institute for Superhard and Novel Carbon MaterialsTroitsk, MoscowRussia
  3. 3.National University of Science and Technology MISiSMoscowRussia
  4. 4.Moscow Institute of Physics and Technology (State University)Dolgoprudnyi, Moscow oblastRussia
  5. 5.Lomonosov Moscow State UniversityMoscowRussia
  6. 6.Research School for Chemistry and Technology of Polymer MaterialsPlekhanov Russian University of EconomicsMoscowRussia

Personalised recommendations