Advertisement

Journal of Experimental and Theoretical Physics

, Volume 123, Issue 5, pp 737–743 | Cite as

Waveguide modes of 1D photonic crystals in a transverse magnetic field

  • D. A. SylgachevaEmail author
  • N. E. Khokhlov
  • A. N. Kalish
  • V. I. Belotelov
Atoms, Molecules, Optics
  • 43 Downloads

Abstract

We analyze waveguide modes in 1D photonic crystals containing layers magnetized in the plane. It is shown that the magnetooptical nonreciprocity effect emerges in such structures during the propagation of waveguide modes along the layers and perpendicularly to the magnetization. This effect involves a change in the phase velocity of the mode upon reversal of the direction of magnetization. Comparison of the effects in a nonmagnetic photonic crystal with an additional magnetic layer and in a photonic crystal with magnetic layers shows that the magnitude of this effect is several times larger in the former case in spite of the fact that the electromagnetic field of the modes in the latter case is localized in magnetic regions more strongly. This is associated with asymmetry of the dielectric layers contacting with the magnetic layer in the former case. This effect is important for controlling waveguide structure modes with the help of an external magnetic field.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Freeman, Fiber-Optic Systems for Telecommunications (Wiley, New York, 2002; Tekhnosfera, Moscow, 2006).Google Scholar
  2. 2.
    H. G. Unger, Planar Optical Waveguides and Fibres (Oxford Univ. Press, Oxford, 1977; Mir, Moscow, 1981).Google Scholar
  3. 3.
    O. K. Sklyarov, Fiber-Optic Networks and Communication Systems (SOLON-Press, Moscow, 2001) [in Russian].Google Scholar
  4. 4.
    D. V. Iorgachev and O. V. Bondarenko, Fiber-Optical Cables and Communication Lines (Eko-Trendz, Moscow, 2002) [in Russian].Google Scholar
  5. 5.
    M. Salib, L. Liao, and R. Jones, Intel Technol. J. 8, 143 (2004).Google Scholar
  6. 6.
    A. M. Zheltikov, Phys. Usp. 47, 1205 (2004).ADSCrossRefGoogle Scholar
  7. 7.
    Y. Tanaka, H. Nakamura, Y. Sugimoto, et al., Phys. Lett. 86, 081108 (2005).Google Scholar
  8. 8.
    M. Inoue, K. I. Arai, T. Fujiiet, et al., J. Appl. Phys. 83, 6768 (1998).ADSCrossRefGoogle Scholar
  9. 9.
    V. N. Berzhansky, T. V. Mikhailova, A. V. Karavainikov, et al., J. Magn. Soc. Jpn. 36, 42 (2012).CrossRefGoogle Scholar
  10. 10.
    I. L. Lyubchanskii, N. N. Dadoenkova, M. I. Lyubchanskii, et al., J. Phys. D 36, 277 (2003).ADSCrossRefGoogle Scholar
  11. 11.
    A. A. Fedyanin, T. Yoshida, K. Nishimura, et al., J. Magn. Magn. Mater. 96, 258 (2003).Google Scholar
  12. 12.
    A. A. Fedyanin, O. A. Aktsipetrov, D. Kobayashi, et al., J. Magn. Magn. Mater. 282, 256 (2004).ADSCrossRefGoogle Scholar
  13. 13.
    S. Kahl and A. M. Grishin, Appl. Phys. Lett. 84, 1438 (2004).ADSCrossRefGoogle Scholar
  14. 14.
    M. Inoue, K. I. Arai, M. Abe, et al., J. Magn. Soc. Jpn. 22, 141 (1998).CrossRefGoogle Scholar
  15. 15.
    M. Inoue, A.V. Baryshev, A. B. Khanikaev, et al., IEICE Trans. Electron. E91-C, 1630 (2008).ADSCrossRefGoogle Scholar
  16. 16.
    B. Gaiyan, D. Lijuan, F. Shuai, et al., Opt. Mater. 35, 252 (2012).ADSCrossRefGoogle Scholar
  17. 17.
    M. Vasiliev, V. A. Kotov, K. Alameh, et al., IEEE Trans. Magn. 44, 323 (2008).ADSCrossRefGoogle Scholar
  18. 18.
    A. K. Zvezdin and V. I. Belotelov, Eur. Phys. J. B 37, 479 (2004).ADSCrossRefGoogle Scholar
  19. 19.
    T. Goto, A. V. Baryshev, M. Inoue, et al., Phys. Rev. B 79, 125103 (2009).ADSCrossRefGoogle Scholar
  20. 20.
    A. P. Vinogradov, A. V. Dorofeenko, A. M. Merzlikin, and A. A. Lisyansky, Phys. Usp. 53, 243 (2010).ADSCrossRefGoogle Scholar
  21. 21.
    A. M. Merzlikin, A. P. Vinogradov, A. V. Dorofeenko, et al., Phys. B: Condens. Matter 394, 277 (2007).ADSCrossRefGoogle Scholar
  22. 22.
    M. E. Sasin, R. P. Seisyan, M. A. Kalitteevski, et al., Appl. Phys. Lett. 92, 251112 (2008).ADSCrossRefGoogle Scholar
  23. 23.
    R. Badugu, E. Descrovi, and J. R. Lakowicz, Anal. Biochem. 445, 1 (2014).CrossRefGoogle Scholar
  24. 24.
    A. N. Kalish, D. O. Ignatyeva, V. I. Belotelov, et al., Laser Phys. 24, 094006 (2014).ADSCrossRefGoogle Scholar
  25. 25.
    A. Zh. Prokhorov, G. A. Smolenskii, and A. N. Ageev, Sov. Phys. Usp. 27, 339 (1984).ADSCrossRefGoogle Scholar
  26. 26.
    V. I. Belotelov, D. A. Bykov, L. L. Doskolovich, et al., J. Exp. Theor. Phys. 110, 816 (2010)].ADSCrossRefGoogle Scholar
  27. 27.
    L. E. Kreilkamp, V. I. Belotelov, J. Y. Chin, et al., Phys. Rev. X 3, 041019 (2013).Google Scholar
  28. 28.
    E. Ferreiro-Vila, J. M. Garcia-Martin, A. Cebollada, et al., Opt. Express 21, 4917 (2013).ADSCrossRefGoogle Scholar
  29. 29.
    P. Yeh and A. Yariv, J. Opt. Soc. Am. 67, 423 (1977).ADSCrossRefGoogle Scholar
  30. 30.
    A. Yariv and P. Ye, Optical Waves in Crystals: Propagation and Control of Laser Radiation (Mir, Moscow, 1987, Wiley, New York, 2003).Google Scholar
  31. 31.
    P. Yeh and A. Yariv, Opt. Commun. 19, 427 (1976).ADSCrossRefGoogle Scholar
  32. 32.
    M. Inoue, H. Uchida, K. Nishimura, et al., J. Mater. Chem. 16, 678 (2006).CrossRefGoogle Scholar
  33. 33.
    S. G. Johnson, M. Ibanescu, M. Skorobogatiy, et al., Opt. Express 9, 748 (2001).ADSCrossRefGoogle Scholar
  34. 34.
    Y. Xu, A. Yariv, J. Fleming, et al., Opt. Express 11, 1039 (2003).ADSCrossRefGoogle Scholar
  35. 35.
    A. Mizrahi and L. Schachter, Opt. Express 12, 3156 (2004).ADSCrossRefGoogle Scholar
  36. 36.
    A. K. Zvezdin and V. A. Kotov, Magneto-Optics of Thin Films (Nauka, Moscow, 1984) [in Russian].Google Scholar
  37. 37.
    N. E. Khokhlov, A. R. Prokopov, A. N. Shaposhnikov, et al., J. Phys. D: App. Phys. 48, 095001 (2015).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2016

Authors and Affiliations

  • D. A. Sylgacheva
    • 1
    • 2
    Email author
  • N. E. Khokhlov
    • 1
    • 2
  • A. N. Kalish
    • 1
    • 2
  • V. I. Belotelov
    • 1
    • 2
  1. 1.Physics DepartmentMoscow State UniversityMoscowRussia
  2. 2.Russian Quantum CenterSkolkovo, MoscowRussia

Personalised recommendations