Advertisement

Journal of Experimental and Theoretical Physics

, Volume 123, Issue 5, pp 752–761 | Cite as

Autoionization resonances in the photoabsorption spectra of Fe n+ iron ions

  • A. V. Konovalov
  • A. N. Ipatov
Atoms, Molecules, Optics

Abstract

The photoabsorption cross sections of a neutral iron atom, as well as positive Fe+ and Fe2+ ions, are calculated in the relativistic random-phase approximation with exchange in the energy range 20–160 eV. The wavefunctions of the ground and excited states are calculated in the single-configuration Hartree–Fock–Dirac approximation. The resultant photoabsorption spectra are compared with experimental data and with the results of calculations based on the nonrelativistic spin-polarized version of the random-phase approximation with exchange. Series of autoionization resonance peaks, as well as giant autoionization resonance lines corresponding to discrete transitions 3p → 3d, are clearly observed in the photoabsorption cross sections. The conformity of the positions of calculated peaks of giant autoionization resonances with experimental data is substantially improved by taking into account additionally the correlation electron–electron interaction based on the model of the dynamic polarization potential.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Ya. Amusia, Atomic Photoeffect (Plenum, New York, 1990).CrossRefGoogle Scholar
  2. 2.
    D. Khartri, Atomic Structure Computations (Inostr. Liter., Moscow, 1960).Google Scholar
  3. 3.
    M. Ya. Amusia, N. A. Cherepkov, and L. V. Chernysheva, Phys. Lett. A 24, 541 (1967).ADSCrossRefGoogle Scholar
  4. 4.
    M. Ya. Amusia, V. K. Ivanov, and N. A. Cherepkov, Sov. Phys. JETP 33, 90 (1974).ADSGoogle Scholar
  5. 5.
    M. Ya. Amusia and V. K. Ivanov, Sov. Phys. Usp. 30, 449 (1987).ADSCrossRefGoogle Scholar
  6. 6.
    M. Ya. Amusia and L. V. Chernysheva, Computation of Atomic Processes (Inst. Phys., Bristol, Philadelphia, 1997).CrossRefGoogle Scholar
  7. 7.
    M. Ya. Amusia, V. K. Ivanov, and L. V. Chernysheva, J. Phys. B 14, L19 (1981).ADSCrossRefGoogle Scholar
  8. 8.
    M. Ya. Amusia, L. V. Chernysheva, and V. K. Ivanov, Rad. Phys. Chem. 59, 137 (2000).ADSCrossRefGoogle Scholar
  9. 9.
    M. Ya. Amusia, L. V. Chernysheva, Z. Felfli, et al., Phys. Rev. Lett. 88, 093002 (2002).ADSCrossRefGoogle Scholar
  10. 10.
    M. Ya. Amusia and A. S. Kheifets, Phys. Lett. A 82, 407 (1981).ADSCrossRefGoogle Scholar
  11. 11.
    W. R. Johnson and C. D. Lin, Phys. Rev. A 14, 565 (1976).ADSCrossRefGoogle Scholar
  12. 12.
    W. R. Johnson and C. D. Lin, J. Phys. B 10, L331 (1977).ADSCrossRefGoogle Scholar
  13. 13.
    I. P. Grant, Adv. Phys. 19, 747 (1970).ADSCrossRefGoogle Scholar
  14. 14.
    G. F. Gribakin, V. K. Ivanov, M. Yu. Kuchiev, et al., PhTI Preprint No. 1096 (Ioffe Phys. Tech. Inst., Leningr. Inst. Nucl. Phys., Leningrad, 1987).Google Scholar
  15. 15.
    L. V. Chernysheva, G. F. Gribakin, V. K. Ivanov, et al., J. Phys. B 21, L419 (1988).Google Scholar
  16. 16.
    G. F. Gribakin, B. V. Gul’tsev, V. K. Ivanov, et al., Izv. Vyssh. Uchebn. Zaved., Fiz. 33, 86 (1990).Google Scholar
  17. 17.
    A. N. Ipatov, V. K. Ivanov, and R. G. Polozkov, J. Exp. Theor. Phys. 117, 631 (2013).ADSCrossRefGoogle Scholar
  18. 18.
    M. Ya. Amus’ya, V. K. Ivanov, N. A. Cherepkov, et al., Processes in Many-Electron Atoms (Nauka, St.-Petersburg, 2006) [in Russian].Google Scholar
  19. 19.
    A. V. Konovalov and A. N. Ipatov, Nauch.-Tekh. Vedom. SPbGPU, Fiz.-Mat. Hauki, No. 1 (237), 87 (2016).Google Scholar
  20. 20.
    H. Bethe and E. Salpeter, Quantum Mechanics of Oneand Two-Electron Atoms (Springer, Berlin, 1957, Fizmatlit, Moscow, 1960).Google Scholar
  21. 21.
    V. B. Berestetskii, E. M. Lifshits, and L. P. Pitaevskii, Relativistic Quantum Theory (Nauka, Moscow, 1968, Pergamon, Oxford, 1971), Pt. 1.Google Scholar
  22. 22.
    I. S. Kychkin, Principles of Relativistic Theory of Multielectron Atoms and Ions (Fizmatlit, Moscow, 1994) [in Russian].Google Scholar
  23. 23.
    H. Kjeldsen, B. Kristensen, F. Folkmann, et al., J. Phys. B 35, 3655 (2002).ADSCrossRefGoogle Scholar
  24. 24.
    N. El Hassan, J. M. Bizau, C. P. Blancard, et al., Phys. Rev. A 79, 033415 (2009).ADSCrossRefGoogle Scholar
  25. 25.
    A. A. Radtsig and B. M. Smirnov, Parameters of Atoms and Atomic Ions (Energoatomizdat, Moscow, 1986) [in Russian].Google Scholar
  26. 26.
    J. D. Talman and B. A. Shadwick, Phys. Rev. A 14, 36 (1976).ADSCrossRefGoogle Scholar
  27. 27.
    J. Bruneau, J. Phys. B 17, 3009 (1984).ADSCrossRefGoogle Scholar
  28. 28.
    W. Cunto, C. Mendoza, F. Ochsenbein, et al., Astron. Astrophys. 275, L5 (1993).ADSGoogle Scholar
  29. 29.
    S. N. Nahar, Phys. Rev. A 53, 1545 (1996).ADSCrossRefGoogle Scholar
  30. 30.
    K. A. Berrington and C. Ballance, J. Phys. B 34, 2697 (2001).ADSCrossRefGoogle Scholar
  31. 31.
    D. A. Verner and D. G. Yakovlev, Astron. Astrophys. Suppl. Ser. 109, 125 (1995).ADSGoogle Scholar
  32. 32.
    R. F. Reilman and S. T. Manson, Phys. Rev. A 18, 2124 (1978).ADSCrossRefGoogle Scholar
  33. 33.
    D. A. Verner, G. J. Ferland, et al., Astrophys. J. 465, 487 (1996).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2016

Authors and Affiliations

  1. 1.Peter the Great St. Petersburg State Polytechnic UniversitySt. PetersburgRussia

Personalised recommendations