Journal of Experimental and Theoretical Physics

, Volume 123, Issue 4, pp 677–686 | Cite as

The effect of zero Langmuir oscillations of an electromagnetic field on the transverse dielectric permittivity of a degenerate electron–ion plasma

  • B. A. VeklenkoEmail author
Statistical, Nonlinear, and Soft Matter Physics


It is shown theoretically that the electromagnetic background of longitudinal zero oscillations of a temperature-degenerate electron–ion plasma in a thermodynamic equilibrium state resonantly distorts the wave functions of its electrons. This gives rise to a characteristic quantum frequency that nonanalytically depends on Planck’s constant ℏ. Vacuum phenomena in plasma attributed to zero oscillations turn out to be anomalously large. Quantum corrections to the transverse dielectric permittivity of a degenerate electron–ion plasma, which are nonanalytic with respect to ℏ and are attributed to the zero-point oscillations of the plasma, are determined.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. K. Shukla and B. Eliasson, Phys. Usp. 53, 51 (2010).ADSCrossRefGoogle Scholar
  2. 2.
    S. V. Vladimirov and Yu. O. Tyshetskii, Phys. Usp. 54, 1243 (2011).ADSCrossRefGoogle Scholar
  3. 3.
    A. E. Dubinov and A. A. Dubinov, Plasma Phys. Rep. 34, 403 (2008).ADSCrossRefGoogle Scholar
  4. 4.
    D. Bohm, Phys. Rev. 85, 166 (1952).ADSCrossRefGoogle Scholar
  5. 5.
    D. Bohm and D. Pines, Phys. Rev. 82, 625 (1951).ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    Yu. L. Klimontovich and V. P. Silin, Zh. Eksp. Teor. Fiz. 23, 151 (1952).Google Scholar
  7. 7.
    A. E. Dubinov and I. N. Kitaev, Phys. Plasmas 21, 102 (2014).Google Scholar
  8. 8.
    A. E. Dubinov and I. N. Kitaev, Plasma Phys. Rep. 41, 507 (2015).ADSCrossRefGoogle Scholar
  9. 9.
    M. V. Kuzelev, J. Exp. Theor. Phys. 110, 710 (2010).ADSCrossRefGoogle Scholar
  10. 10.
    A. I. Akhiezer and V. B. Berestetskii, Quantum Electrodynamics, 3rd ed. (Nauka, Moscow, 1969; Wiley, New York, 1965)Google Scholar
  11. 11.
    J. R. Klauder and E. C. G. Sudarshan, Fundamentals of Quantum Optics, Dover Books on Physics (Dover, New York, 2006; Mir, Moscow, 1970).Google Scholar
  12. 12.
    B. A. Veklenko, Prikl. Fiz., No. 4, 5 (2011).Google Scholar
  13. 13.
    B. A. Veklenko, Int. J. Opt. 2012, ID648741 (2012).CrossRefGoogle Scholar
  14. 14.
    B. A. Veklenko, Inzh. Fiz., No. 1, 14 (2013).Google Scholar
  15. 15.
    B. A. Veklenko, V. P. Afanas’ev, and A. V. Lubenchenko, J. Exp. Theor. Phys. 118, 521 (2014).Google Scholar
  16. 16.
    L. Tonks and I. Langmuir, Phys. Rev. 33, 195 (1929).ADSCrossRefGoogle Scholar
  17. 17.
    L. D. Landau, Zh. Eksp. Teor. Fiz. 7, 203 (1937).Google Scholar
  18. 18.
    A. A. Vlasov, Zh. Eksp. Teor. Fiz. 8, 291 (1938).Google Scholar
  19. 19.
    L. D. Landau, Zh. Eksp. Teor. Fiz. 16, 574 (1946).Google Scholar
  20. 20.
    V. P. Silin and A. A. Rukhadze, Electromagnetic Properties of Plasma and Plasma-Like Media (Librokom, Moscow, 2012) [in Russian].Google Scholar
  21. 21.
    E. M. Livshits and L. P. Pitaevskii, Physical Kinetics (Nauka, Moscow, 1979, Pergamon, Oxford, 1981).Google Scholar
  22. 22.
    L. V. Keldysh, Sov. Phys. JETP 20, 1018 (1964).MathSciNetGoogle Scholar
  23. 23.
    Sh. M. Kogan, Sov. Phys. Solid State 2, 1074 (1960).Google Scholar
  24. 24.
    V. P. Budak and B. A. Veklenko, J. Quantum. Spectrosc. Quantum. Transfer 112, 864 (2011).Google Scholar
  25. 25.
    H. B. Callen and T. A. Welton, Phys. Rev. 83, 34 (1951).ADSMathSciNetCrossRefGoogle Scholar
  26. 26.
    N. N. Bogolyubov and S. V. Tyablikov, Sov. Phys. Dokl. 4, 589 (1959).ADSGoogle Scholar
  27. 27.
    A. A. Vlasov, Uch. Zap. Mosk. Univ. 75 (2, Pt. 1) (1945).Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2016

Authors and Affiliations

  1. 1.Joint Institute for High TemperaturesRussian Academy of SciencesMoscowRussia

Personalised recommendations