Journal of Experimental and Theoretical Physics

, Volume 123, Issue 2, pp 363–372 | Cite as

Influence of radiative processes on the ignition of deuterium–tritium plasma containing inactive impurities

Statistical, Nonlinear, and Soft Matter Physics

Abstract

The degree of influence of radiative processes on the ignition of deuterium–tritium (DT) plasma has been theoretically studied as dependent on the content of inactive impurities in plasma. The analytic criterion of plasma ignition in inertial confinement fusion (ICF) targets is modified taking into account the absorption of intrinsic radiation from plasma in the ignition region. The influence of radiative processes on the DT plasma ignition has been analytically and numerically studied for plasma that contains a significant fraction of inactive impurities either as a result of DT fuel mixing with ICF target ablator material or as a result of using light metal DT-hydrides as solid noncryogenic fuel. It has been shown that the effect of the absorption of intrinsic radiation leads to lower impurity-induced increase in the ignition energy as compared to that calculated in the approximation of optically transparent ignition region.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. B. Rosanov, C. P. Verdon, M. Decroisette, et al., in Energy from Inertial Fusion, Ed. by W. J. Hogan (IAEA, Vienna, 1995).Google Scholar
  2. 2.
    S. Atzeni and J. Meyer-ter-Vehn, The Physics of Inertial Fusion (Oxford Univ. Press, Oxford, 2004).CrossRefGoogle Scholar
  3. 3.
    S. A. Bel’kov, A. V. Bessarab, O. A. Vinokurov, et al., JETP Lett. 67, 171 (1998).ADSCrossRefGoogle Scholar
  4. 4.
    J. M. Wallace, Phys. Rev. Lett. 82, 3807 (1999).ADSCrossRefGoogle Scholar
  5. 5.
    J. A. Marozas, F. J. Marshall, R. S. Craxton, et al., Phys. Plasmas 13, 056311 (2006).ADSCrossRefGoogle Scholar
  6. 6.
    R. L. McCrory, R. E. Bahr, R. Betti, et al., Nucl. Fusion 41, 1413 (2001).ADSCrossRefGoogle Scholar
  7. 7.
    H. Takabe, H. Nagatomo, A. Sunahara, et al., Fusion Eng. Des. 44, 105 (1999).CrossRefGoogle Scholar
  8. 8.
    M. J. Edwards, P. K. Patel, J. D. Lindl, et al., Phys. Plasmas 20, 070501 (2013).ADSCrossRefGoogle Scholar
  9. 9.
    O. A. Hurricane, D. A. Callahan, D. T. Casey, et al., Nature 506, 343 (2014).ADSCrossRefGoogle Scholar
  10. 10.
    S. Yu. Gus’kov, N. V. Zmitrenko, and V. E. Sherman, J. Exp. Theor. Phys. 116, 673 (2013).ADSCrossRefGoogle Scholar
  11. 11.
    S. Yu. Gus’kov, N. V. Zmitrenko, D. V. Il’in, and V. E. Sherman, Plasma Phys. Rep. 41, 725 (2015).ADSCrossRefGoogle Scholar
  12. 12.
    S. Yu. Gus’kov, D. V. Il’in, and V. E. Sherman, Plasma Phys. Rep. 37, 1020 (2011).ADSCrossRefGoogle Scholar
  13. 13.
    N. G. Basov, S. Yu. Gus’kov, and L. P. Feoktistov, J. Sov. Laser Res. 13, 396 (1992).CrossRefGoogle Scholar
  14. 14.
    M. Tabak, J. Hammer, M. E. Glinsky, et al., Phys. Plasmas 1, 1626 (1994).ADSCrossRefGoogle Scholar
  15. 15.
    V. A. Shcherbakov, Sov. J. Plasma Phys. 9, 240 (1983).Google Scholar
  16. 16.
    R. Betti, C. D. Zhou, K. S. Anderson, et al., Phys. Rev. Lett. 98, 155001 (2007).ADSCrossRefGoogle Scholar
  17. 17.
    Ya. B. Zel’dovich and Yu. P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (Fizmatlit, Moscow, 1963; Academic Press, New York, 1966, 1967).Google Scholar
  18. 18.
    S. Yu. Gus’kov, D. V. Il’in, A. A. Levkovsky, et al., Laser Part. Beams 16, 29 (1998).Google Scholar
  19. 19.
    S. Yu. Gus’kov, O. N. Krokhin, and V. B. Rosanov, Nucl. Fusion 16, 957 (1976).ADSCrossRefGoogle Scholar
  20. 20.
    E. N. Avrorin, L. P. Feoktistov, and L. I. Shibarshov, Sov._J. Plasma Phys. 6, 527 (1980).Google Scholar
  21. 21.
    A. F. Nastoyashchii and L. P. Shevchenko, At. Energ. 32, 451 (1972).Google Scholar
  22. 22.
    S. Yu. Gus’kov and V. B. Rosanov, in Nuclear Fusionby Inertial Confinement, Ed. by G. Velarde (CRC, oca Raton, FL, 1993), p.293.Google Scholar
  23. 23.
    A. Caruso and C. Strangio, Laser Part. Beams 18, 35 (2000).ADSCrossRefGoogle Scholar
  24. 24.
    A. A. Andreev, S. Yu. Gus’kov, D. V. Il’in, A. A. Levkovski, V. B. Rosanov, and V. E. Sherman, J. Exp. Theor. Phys. 92, 69 (2001).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2016

Authors and Affiliations

  1. 1.Lebedev Physical InstituteRussian Academy of SciencesMoscowRussia
  2. 2.National Research Nuclear University MEPhIMoscowRussia
  3. 3.Peter the Great St. Petersburg Polytechnic UniversitySt. PetersburgRussia

Personalised recommendations