Discrete breathers in graphane: Effect of temperature

  • J. A. BaimovaEmail author
  • R. T. Murzaev
  • I. P. Lobzenko
  • S. V. Dmitriev
  • Kun Zhou
Solids and Liquids


The discrete breathers in graphane in thermodynamic equilibrium in the temperature range 50–600 K are studied by molecular dynamics simulation. A discrete breather is a hydrogen atom vibrating along the normal to a sheet of graphane at a high amplitude. As was found earlier, the lifetime of a discrete breather at zero temperature corresponds to several tens of thousands of vibrations. The effect of temperature on the decay time of discrete breathers and the probability of their detachment from a sheet of graphane are studied in this work. It is shown that closely spaced breathers can exchange energy with each other at zero temperature. The data obtained suggest that thermally activated discrete breathers can be involved in the dehydrogenation of graphane, which is important for hydrogen energetics.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. K. Geim and K. S. Novoselov, Nature Mater. 6, 183 (2007).ADSCrossRefGoogle Scholar
  2. 2.
    L. A. Fal’kovskii, J. Exp. Theor. Phys. 106, 575 (2008).ADSCrossRefGoogle Scholar
  3. 3.
    L. A. Fal’kovskii, J. Exp. Theor. Phys. 115, 496 (2012).ADSCrossRefGoogle Scholar
  4. 4.
    Yu. A. Baimova, S. V. Dmitriev, A. V. Savin, and Yu. S. Kivshar’, Phys. Solid State 54, 866 (2012).ADSCrossRefGoogle Scholar
  5. 5.
    S. V. Dmitriev, Yu. A. Baimova, A. B. Savin, and Yu. S. Kivshar’, JETP Lett. 93, 571 (2011).ADSCrossRefGoogle Scholar
  6. 6.
    A. A. Greshnov, JETP Lett. 100, 518 (2014).ADSCrossRefGoogle Scholar
  7. 7.
    L. A. Chernozatonskii, A. A. Artyukh, and D. G. Kvashnin, JETP Lett. 95, 266 (2012).ADSCrossRefGoogle Scholar
  8. 8.
    G. Stan and M. W. Cole, J. Low Temp. Phys. 110, 539 (1998).ADSCrossRefGoogle Scholar
  9. 9.
    K. A. Williams and P. C. Eklund, Chem. Phys. Lett. 320, 352 (2000).ADSCrossRefGoogle Scholar
  10. 10.
    S. M. Lee and Y. H. Lee, Appl. Phys. Lett. 76, 2877 (2000).ADSCrossRefGoogle Scholar
  11. 11.
    G. E. Froudakis, Mater. Today 14, 324 (2011).CrossRefGoogle Scholar
  12. 12.
    Yu. S. Nechaev and N. T. Veziroglu, Int. J. Phys. Sci. 10, 54 (2015).CrossRefGoogle Scholar
  13. 13.
    D. C. Elias, R. R. Nair, T. M. G. Mohiuddin, et al., Science 323, 610 (2009).ADSCrossRefGoogle Scholar
  14. 14.
    B. Liu, J. A. Baimova, S. V. Dmitriev et al., J. Phys. D 46, 305302 (2013).CrossRefGoogle Scholar
  15. 15.
    G. M. Chechin, S. V. Dmitriev, I. P. Lobzenko, and D. S. Ryabov, Phys. Rev. B 90, 045432 (2014).ADSCrossRefGoogle Scholar
  16. 16.
    J. A. Baimova, S. V. Dmitriev, and K. Zhou, Europhys. Lett. 100, 36005 (2012).ADSCrossRefGoogle Scholar
  17. 17.
    Y. Yamayose, Y. Kinoshita, Y. Doi, et al., Europhys. Lett. 80, 4008 (2007).CrossRefGoogle Scholar
  18. 18.
    L. Z. Khadeeva, C. V. Dmitriev, and Yu. S. Kivshar’, JETP Lett. 94, 539 (2011).ADSCrossRefGoogle Scholar
  19. 19.
    T. Shimada, D. Shirasaki, and T. Kitamura, Phys. Rev. B 81, 035401 (2010).ADSCrossRefGoogle Scholar
  20. 20.
    E. A. Korznikova, J. A. Baimova, and S. V. Dmitriev, Europhys. Lett. 102, 60004 (2013).ADSCrossRefGoogle Scholar
  21. 21.
    E. A. Korznikova, A. V. Savin, Yu. A. Baimova, S. V. Dmitriev, and R. R. Mulyukov, JETP Lett. 96, 222 (2012).ADSCrossRefGoogle Scholar
  22. 22.
    J. A. Baimova, E. A. Korznikova, I. P. Lobzenko, and S. V. Dmitriev, Rev. Adv. Mater. Sci. 42, 68 (2015).Google Scholar
  23. 23.
    Z. Q. Luo, T. Yu, K.-J. Kim, et al., ACS Nano 3, 1781 (2009).CrossRefGoogle Scholar
  24. 24.
    S. Plimpton, J. Comput. Phys. 117, 1 (1995).ADSCrossRefGoogle Scholar
  25. 25.
    S. Stuart, A. Tutein, and J. Harrison, J. Chem. Phys. 112, 6472 (2000).ADSCrossRefGoogle Scholar
  26. 26.
    J. A. Baimova, B. Liu, and K. Zhou, Lett. Mater. 4, 96 (2014).Google Scholar
  27. 27.
    Q. X. Pei, Y. W. Zhang, and V. B. Shenoy, Carbon 48, 898 (2010).CrossRefGoogle Scholar
  28. 28.
    V. Varshney, S. S. Patnaik, A. K. Roy, et al., ACS Nano 4, 1153 (2010).CrossRefGoogle Scholar
  29. 29.
    N. Wei, L. Q. Xu, H. Q. Wang, and J. C. Zheng, Nanotechnology 22, 105705 (2011).ADSCrossRefGoogle Scholar
  30. 30.
    J. D. Jones, W. D. Hoffmann, A. V. Jesseph, et al., Appl. Phys. Lett. 97, 233104 (2010).ADSCrossRefGoogle Scholar
  31. 31.
    M. V. Ivanchenko, O. I. Kanakov, V. D. Shalfeev, and S. Flach, Physica D 198, 120 (2004).ADSMathSciNetCrossRefGoogle Scholar
  32. 32.
    M. Eleftheriou and S. Flach, Physica D 202, 142 (2005).ADSCrossRefGoogle Scholar
  33. 33.
    L. Z. Khadeeva and S. V. Dmitriev, Phys. Rev. B 84, 144304 (2011).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2016

Authors and Affiliations

  • J. A. Baimova
    • 1
    • 2
    Email author
  • R. T. Murzaev
    • 2
  • I. P. Lobzenko
    • 2
    • 3
  • S. V. Dmitriev
    • 2
    • 4
  • Kun Zhou
    • 5
  1. 1.Institute of Metal Physics, Ural BranchRussian Academy of SciencesYekaterinburgRussia
  2. 2.Institute for Metals Superplasticity ProblemsRussian Academy of SciencesUfa, BashkortostanRussia
  3. 3.Institute of Molecule and Crystal Physics, Ufa Research CenterRussian Academy of SciencesUfa, BashkortostanRussia
  4. 4.Tomsk State UniversityTomskRussia
  5. 5.School of Mechanical and Aerospace EngineeringNanyang Technological UniversitySingaporeSingapore

Personalised recommendations