Advertisement

DMFT+Σ approach to disordered hubbard model

  • E. Z. KuchinskiiEmail author
  • M. V. Sadovskii
Special issue in honor of L.V. Keldysh’s 85th birthday Issue Editor: S. Tikhodeev

Abstract

We briefly review the generalized dynamic mean-field theory DMFT+Σ applied to both repulsive and attractive disordered Hubbard models. We examine the general problem of metal–insulator transition and the phase diagram in the repulsive case, as well as the BCS–BEC crossover region of the attractive model, demonstrating a certain universality of single-electron properties under disordering in both models. We also discuss and compare the results for the density of states and dynamic conductivity in the repulsive and attractive cases and the generalized Anderson theorem behavior of the superconducting critical temperature in the disordered attractive case. A brief discussion of the behavior of Ginzburg–Landau coefficients under disordering in the BCS–BEC crossover region is also presented.

Keywords

Hubbard Model Universal Dependence Anderson Transition Correlate Metal Hubbard Interaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. F. Mott, Metal–Insulator Transitions, 2nd ed. (Taylor and Francis, London, 1990).Google Scholar
  2. 2.
    J. Hubbard, Proc. R. Soc. London, Ser. A 276, 238 (1963); Proc. R. Soc. London, Ser. A 277, 237 (1964); Proc. R. Soc. London, Ser. A 281, 401 (1964); Proc. R. Soc. London, Ser. A 285, 542 (1965); Proc. R. Soc. London, Ser. A 296, 829 (1967); Proc. R. Soc. London, Ser. A 296, 100 (1967).ADSCrossRefGoogle Scholar
  3. 3.
    W. Metzner and D. Vollhardt, Phys. Rev. Lett. 62, 324 (1989).ADSCrossRefGoogle Scholar
  4. 4.
    D. Vollhardt, in Correlated Electron Systems, Ed. by V. J. Emery (World Scientific, Singapore, 1993), p. 57.Google Scholar
  5. 5.
    Th. Pruschke, M. Jarrell, and J. K. Freericks, Adv. Phys. 44, 210 (1995).CrossRefGoogle Scholar
  6. 6.
    A. Georges, G. Kotliar, W. Krauth, and M. J. Rozenberg, Rev. Mod. Phys. 68, 13 (1996).ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    D. Vollhardt, AIP Conf. Proc. 1297, 339 (2010), arXiv:1004.5069.ADSCrossRefGoogle Scholar
  8. 8.
    G. Kotliar and D. Vollhardt, Phys. Today 57, 53 (2004).CrossRefGoogle Scholar
  9. 9.
    D. M. Eagles, Phys. Rev. 186, 456 (1969).ADSCrossRefGoogle Scholar
  10. 10.
    A. J. Leggett, in Modern Trends in the Theory of Condensed Matter, Ed. by A. Pekalski and J. Przystawa (Springer, Berlin, 1980).Google Scholar
  11. 11.
    P. Nozieres and S. Schmitt-Rink, J. Low Temp. Phys. 59, 195 (1985).ADSCrossRefGoogle Scholar
  12. 12.
    I. Bloch, J. Dalibard, and W. Zwerger, Rev. Mod. Phys. 80, 885 (2008).ADSCrossRefGoogle Scholar
  13. 13.
    L. P. Pitaevskii, Phys. Usp. 44, 333 (2006).ADSCrossRefGoogle Scholar
  14. 14.
    E. Z. Kuchinskii, I. A. Nekrasov, and M. V. Sadovskii, JETP Lett. 82, 198 (2005).ADSCrossRefGoogle Scholar
  15. 15.
    M. V. Sadovskii, I. A. Nekrasov, E. Z. Kuchinskii, Th. Prushke, and V. I. Anisimov, Phys. Rev. B 72, 155105 (2005).ADSCrossRefGoogle Scholar
  16. 16.
    E. Z. Kuchinskii, I. A. Nekrasov, and M. V. Sadovskii, Low Temp. Phys. 32, 398 (2006).ADSCrossRefGoogle Scholar
  17. 17.
    E. Z. Kuchinskii, I. A. Nekrasov, and M. V. Sadovskii, Phys. Usp. 55, 325 (2012).ADSCrossRefGoogle Scholar
  18. 18.
    E. Z. Kuchinskii, I. A. Nekrasov, and M. V. Sadovskii, J. Exp. Theor. Phys. 106, 581 (2008).ADSCrossRefGoogle Scholar
  19. 19.
    E. Z. Kuchinskii, N. A. Kuleeva, I. A. Nekrasov, and M. V. Sadovskii, J. Exp. Theor. Phys. 110, 325 (2010).ADSCrossRefGoogle Scholar
  20. 20.
    E. Z. Kuchinskii, I. A. Nekrasov, and M. V. Sadovskii, Phys. Rev. B 80, 115124 (2009).ADSCrossRefGoogle Scholar
  21. 21.
    E. Z. Kuchinskii, I. A. Nekrasov, and M. V. Sadovskii, Phys. Rev. B 75, 115102 (2007).ADSCrossRefGoogle Scholar
  22. 22.
    N. A. Kuleeva, E. Z. Kuchinskii, and M. V. Sadovskii, J. Exp. Theor. Phys. 119, 264 (2014).CrossRefGoogle Scholar
  23. 23.
    E. Z. Kuchinskii, N. A. Kuleeva, and M. V. Sadovskii, JETP Lett. 100, 192 (2014).CrossRefGoogle Scholar
  24. 24.
    E. Z. Kuchinskii, N. A. Kuleeva, and M. V. Sadovskii, J. Exp. Theor. Phys. 120, 1055 (2015); arXiv:1411.1547.ADSCrossRefGoogle Scholar
  25. 25.
    P. W. Anderson, Phys. Rev. 109, 1492 (1958).ADSCrossRefGoogle Scholar
  26. 26.
    M. V. Sadovskii, Diagrammatics (World Scientific, Singapore, 2006).CrossRefzbMATHGoogle Scholar
  27. 27.
    R. Bulla, T. A. Costi, and T. Pruschke, Rev. Mod. Phys. 60, 395 (2008).ADSCrossRefGoogle Scholar
  28. 28.
    D. Vollhardt and P. Wölfle, Phys. Rev. B 22, 4666 (1980); Phys. Rev. Lett. 48, 699 (1982); Springer Ser. Solid State Sci. 39, 26 (1982).ADSCrossRefGoogle Scholar
  29. 29.
    M. V. Sadovskii, The Theory of Electron Localizationin Disordered Systems, Soviet Scientific Reviews–Physics Reviews, Vol. 7, Ed. by I. M. Khalatnikov (Harwood Academic, New York, 1986), p. 1Google Scholar
  30. 29a.
    A. V. Myasnikov and M. V. Sadovskii, Sov. Phys. Solid State 24, 2033 (1982)Google Scholar
  31. 29b.
    E. A. Kotov and M. V. Sadovskii, Zs. Phys. B 51, 17 (1983).ADSCrossRefGoogle Scholar
  32. 30.
    P. Wölfle and D. Vollhardt, in Electronic Phase Transitions, Ed. by W. Hanke and Yu. V. Kopaev (North–Holland, Amsterdam, 1992), p. 1.Google Scholar
  33. 31.
    K. Byczuk, W. Hofstetter, and D. Vollhardt, Phys. Rev. Lett. 94, 056404 (2005).ADSCrossRefGoogle Scholar
  34. 32.
    R. Bulla, Phys. Rev. Lett. 83, 136 (1999)ADSCrossRefGoogle Scholar
  35. 32a.
    R. Bulla, T. A. Costi, and D. Vollhardt, Phys. Rev. B 64, 045103 (2001).ADSCrossRefGoogle Scholar
  36. 33.
    N. Blümer, PhD Thesis (München, 2002).Google Scholar
  37. 34.
    P. A. Lee and T. V. Ramakrishnan, Rev. Mod. Phys. 57, 287 (1985)ADSCrossRefGoogle Scholar
  38. 34a.
    D. Belitz and T. R. Kirkpatrick, Rev. Mod. Phys. 66, 261 (1994).ADSCrossRefGoogle Scholar
  39. 35.
    A. M. Finkelshtein, Sov. Phys. JETP 57, 97 (1983)Google Scholar
  40. 35a.
    C. Castellani et al., Phys. Rev. B 30, 527 (1984).ADSMathSciNetCrossRefGoogle Scholar
  41. 36.
    M. A. Erkabaev and M. V. Sadovskii, J. Moscow Phys. Soc. 2, 233 (1992).Google Scholar
  42. 37.
    M. Keller, W. Metzner, and U. Schollwock, Phys. Rev. Lett. 86, 4612 (2001).ADSCrossRefGoogle Scholar
  43. 38.
    A. Toschi, P. Barone, M. Capone, and C. Castellani, New J. Phys. 7, 7 (2005).ADSCrossRefGoogle Scholar
  44. 39.
    J. Bauer, A. C. Hewson, and N. Dupis, Phys. Rev. B 79, 214518 (2009).ADSCrossRefGoogle Scholar
  45. 40.
    A. Koga and P. Werner, Phys. Rev. A 84, 023638 (2011).ADSCrossRefGoogle Scholar
  46. 41.
    M. V. Sadovskii, Superconductivity and Localization (World Scientific, Singapore, 2000).CrossRefzbMATHGoogle Scholar
  47. 42.
    P. G. de Gennes, Superconductivity of Metals and Alloys (W. A. Benjamin, New York, 1966).zbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2016

Authors and Affiliations

  1. 1.Institute for Electrophysics, Ural BranchRussian Academy of SciencesYekaterinburgRussia
  2. 2.Mikheev Institute for Metal Physics, Ural BranchRussian Academy of SciencesYekaterinburgRussia

Personalised recommendations