Advertisement

U(1) and SU(2) quantum dissipative systems: the Caldeira–Leggett Versus Ambegaokar–Eckern–Schön approaches

  • A. Shnirman
  • A. Saha
  • I. S. Burmistrov
  • M. N. Kiselev
  • A. Altland
  • Y. Gefen
Special issue in honor of L.V. Keldysh’s 85th birthday Issue Editor: S. Tikhodeev
  • 61 Downloads

Abstract

There are two paradigmatic frameworks for treating quantum systems coupled to a dissipative environment: the Caldeira–Leggett and Ambegaokar–Eckern–Schön approaches. Here, we recall the differences between them and explain the consequences of applying each to a zero-dimensional spin (having an SU(2) symmetry) in a dissipative environment (a dissipative quantum dot near or beyond the Stoner instability point).

Keywords

Shot Noise Berry Phase Charge Dynamic Cooper Channel Quantum Dissipative System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Schwinger, J. Math. Phys. 2, 407 (1961).ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    L. V. Keldysh, Sov. Phys. JETP 20, 1018 (1965).MathSciNetGoogle Scholar
  3. 3.
    A. Kamenev and A. Andreev, Phys. Rev. B 60, 2218 (1999).ADSCrossRefGoogle Scholar
  4. 4.
    A. Kamenev, Field Theory of Non-Equilibrium Systems (Cambridge Univ. Press, Cambridge, 2011).CrossRefzbMATHGoogle Scholar
  5. 5.
    A. Altland and B. D. Simons, Condensed Matter Field Theory (Cambridge Univ. Press, Cambridge, 2010). Cambridge Books OnlineCrossRefzbMATHGoogle Scholar
  6. 6.
    A. Schmid, J. Low Temp. Phys. 49, 609 (1982).ADSCrossRefGoogle Scholar
  7. 7.
    C. Gardiner and P. Zoller, Quantum Noise: A Handbook of Markovian and Non-Markovian Quantum Stochastic Methods with Applications to Quantum Optics, Springer Series in Synergetics (Springer, Berlin, Heidelberg, 2004).zbMATHGoogle Scholar
  8. 8.
    A. O. Caldeira and A. J. Leggett, Phys. Rev. Lett. 46, 211 (1981).ADSCrossRefGoogle Scholar
  9. 9.
    V. Ambegaokar, U. Eckern, and G. Schön, Phys. Rev. Lett. 48, 1745 (1982).ADSCrossRefGoogle Scholar
  10. 10.
    U. Eckern, G. Schön, and V. Ambegaokar, Phys. Rev. B 30, 6419 (1984).ADSCrossRefGoogle Scholar
  11. 11.
    R. Landauer, Philos. Mag. 21 172, 863 (2015).ADSCrossRefGoogle Scholar
  12. 12.
    M. Büttiker, Phys. Rev. Lett. 57, 1761 (1986).ADSCrossRefGoogle Scholar
  13. 13.
    Y. Imry, Introduction to Mesoscopic Physics (Oxford Univ. Press, Oxford, 2008).Google Scholar
  14. 14.
    Y. V. Nazarov and Y. M. Blanter, Quantum Transport: Introduction to Nanoscience (Cambridge Univ. Press, Cambridge, 2009).CrossRefGoogle Scholar
  15. 15.
    I. L. Kurland, I. L. Aleiner, and B. L. Altshuler, Phys. Rev. B 62, 14886 (2000).ADSCrossRefGoogle Scholar
  16. 16.
    I. L. Aleiner, P. W. Brouwer, and L. I. Glazman, Phys. Rep. 358, 309 (2002).ADSCrossRefGoogle Scholar
  17. 17.
    Y. Alhassid, Rev. Mod. Phys. 72, 895 (2000).ADSCrossRefGoogle Scholar
  18. 18.
    A. V. Andreev and A. Kamenev, Phys. Rev. Lett. 81, 3199 (1998).ADSCrossRefGoogle Scholar
  19. 19.
    E. C. Stoner, Rep. Progr. Phys. 11, 43 (1947).ADSCrossRefGoogle Scholar
  20. 20.
    M. Schechter, Phys. Rev. B 70, 024521 (2004).ADSCrossRefGoogle Scholar
  21. 21.
    S. Schmidt, Y. Alhassid, and K. van Houcke, Europhys. Lett. 80, 47004 (2007).ADSCrossRefGoogle Scholar
  22. 22.
    S. Schmidt and Y. Alhassid, Phys. Rev. Lett. 101, 207003 (2008).ADSCrossRefGoogle Scholar
  23. 23.
    B. Nissan-Cohen, Y. Gefen, M. N. Kiselev, and I. V. Lerner, Phys. Rev. B 84, 075307 (2011).ADSCrossRefGoogle Scholar
  24. 24.
    M. N. Kiselev and Y. Gefen, Phys. Rev. Lett. 96, 066805 (2006).ADSCrossRefGoogle Scholar
  25. 25.
    A. U. Sharafutdinov, D. S. Lyubshin, and I. S. Burmistrov, Phys. Rev. B 90, 195308 (2014).ADSCrossRefGoogle Scholar
  26. 26.
    D. S. Lyubshin, A. U. Sharafutdinov, and I. S. Burmistrov, Phys. Rev. B 89, 201304 (2014).ADSCrossRefGoogle Scholar
  27. 27.
    Y. Alhassid and T. Rupp, Phys. Rev. Lett. 91, 056801 (2003).ADSCrossRefGoogle Scholar
  28. 28.
    Y. Alhassid, T. Rupp, A. Kaminski, and L. I. Glazman, Phys. Rev. B 69, 115331 (2004).ADSCrossRefGoogle Scholar
  29. 29.
    H. E. Türeci and Y. Alhassid, Phys. Rev. B 74, 165333 (2006).ADSCrossRefGoogle Scholar
  30. 30.
    G. Billings, A. Douglas Stone, and Y. Alhassid, Phys. Rev. B 81, 205303 (2010).ADSCrossRefGoogle Scholar
  31. 31.
    G. Usaj and H. U. Baranger, Phys. Rev. B 67, 121308 (2003).ADSCrossRefGoogle Scholar
  32. 32.
    I. S. Burmistrov, Yu. Gefen, and M. N. Kiselev, JETP Lett. 92, 179 (2010).ADSCrossRefGoogle Scholar
  33. 33.
    I. S. Burmistrov, Yu. Gefen, and M. N. Kiselev, Phys. Rev. B 85, 155311 (2012).ADSCrossRefGoogle Scholar
  34. 34.
    B. Sothmann, J. König, and Yu. Gefen, Phys. Rev. Lett. 108, 166603 (2012).ADSCrossRefGoogle Scholar
  35. 35.
    A. Saha, Yu. Gefen, I. Burmistrov, and A. Shnirman, and A. Altland, Ann. Phys. 327, 2543 (2012).ADSCrossRefGoogle Scholar
  36. 36.
    A. Shnirman, Yu. Gefen, A. Saha, I. S. Burmistrov, M. N. Kiselev, and A. Altland, Phys. Rev. Lett. 114, 176806 (2015).ADSMathSciNetCrossRefGoogle Scholar
  37. 37.
    T. L. Gilbert, IEEE Trans. Magn. 40, 3443 (2004).ADSCrossRefGoogle Scholar
  38. 38.
    W. F. Brown, Phys. Rev. 130, 1677 (1963).ADSCrossRefGoogle Scholar
  39. 39.
    Y. Tserkovnyak, A. Brataas, G. E. W. Bauer, and B. I. Halperin, Rev. Mod. Phys. 77, 1375 (2005).ADSCrossRefGoogle Scholar
  40. 40.
    H. Katsura, A. V. Balatsky, Z. Nussinov, and N. Nagaosa, Phys. Rev. B 73, 212501 (2006).ADSCrossRefGoogle Scholar
  41. 41.
    N. Bode, L. Arrachea, G. S. Lozano, T. S. Nunner, and F. von Oppen, Phys. Rev. B 85, 115440 (2012).ADSCrossRefGoogle Scholar
  42. 42.
    A. L. Chudnovskiy, J. Swiebodzinski, and A. Kamenev, Phys. Rev. Lett. 101, 066601 (2008).ADSCrossRefGoogle Scholar
  43. 43.
    D. M. Basko and M. G. Vavilov, Phys. Rev. B 79, 064418 (2009).ADSCrossRefGoogle Scholar
  44. 44.
    A. G. Abanov and Ar. Abanov, Phys. Rev. B 65, 184407 (2002).ADSCrossRefGoogle Scholar
  45. 45.
    G. E. Volovik, J. Phys. C: Solid State Phys. 20, L83 (1987).ADSCrossRefGoogle Scholar
  46. 46.
    A. Altland, A. de Martino, R. Egger, and B. Narozhny, Phys. Rev. B 82, 115323 (2010).ADSCrossRefGoogle Scholar
  47. 47.
    D. B. Gutman, A. D. Mirlin, and Yu. Gefen, Phys. Rev. B 71, 085118 (2005).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2016

Authors and Affiliations

  • A. Shnirman
    • 1
    • 2
  • A. Saha
    • 3
  • I. S. Burmistrov
    • 2
    • 4
  • M. N. Kiselev
    • 5
  • A. Altland
    • 6
  • Y. Gefen
    • 7
    • 8
  1. 1.Institut fur Theorie der Kondensierten MaterieKarlsruhe Institute of TechnologyKarlsruheGermany
  2. 2.Landau Institute for Theoretical PhysicsRussian Academy of SciencesMoscowRussia
  3. 3.Institute of PhysicsBhubaneswarIndia
  4. 4.Moscow Institute of Physics and TechnologyMoscowRussia
  5. 5.International Center for Theoretical PhysicsTriesteItaly
  6. 6.Institut für Theoretische PhysikUniversität zu KölnKölnGermany
  7. 7.Department of Condensed Matter PhysicsWeizmann Institute of ScienceRehovotIsrael
  8. 8.Institut für NanotechnologieKarlsruhe Institute of TechnologyKarlsruheGermany

Personalised recommendations