Electron gas induced in SrTiO3

Special issue in honor of L.V. Keldysh’s 85th birthday Issue Editor: S. Tikhodeev

Abstract

This mini-review is dedicated to the 85th birthday of Prof. L.V. Keldysh, from whom we have learned so much. In this paper, we study the potential and electron density depth profiles in surface accumulation layers in crystals with a large and nonlinear dielectric response such as SrTiO3 (STO) in the cases of planar, spherical, and cylindrical geometries. The electron gas can be created by applying an induction D0 to the STO surface. We describe the lattice dielectric response of STO using the Landau–Ginzburg free energy expansion and employ the Thomas–Fermi (TF) approximation for the electron gas. For the planar geometry, we arrive at the electron density profile n(x) ∝ (x + d)–12/7, where dD0–12/7. We extend our results to overlapping electron gases in GTO/STO/GTO heterojunctions and electron gases created by spill-out from NSTO (heavily n-type doped STO) layers into STO. Generalization of our approach to a spherical donor cluster creating a big TF atom with electrons in STO brings us to the problem of supercharged nuclei. It is known that for an atom with a nuclear charge Ze where Z > 170, electrons collapse onto the nucleus, resulting in a net charge Zn < Z. Here, instead of relativistic physics, the collapse is caused by the nonlinear dielectric response. Electrons collapse into the charged spherical donor cluster with radius R when its total charge number Z exceeds the critical value ZcR/a, where a is the lattice constant. The net charge eZn grows with Z until Z exceeds Z* ≈ (R/a)9/7. After this point, the charge number of the compact core Zn remains ≈ Z*, with the rest Z* electrons forming a sparse TF atom with it. We extend our studies of collapse to the case of long cylindrical clusters as well.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Chakhalian, J. W. Freeland, A. J. Millis, C. Panagopoulos, and J. M. Rondinelli, Rev. Mod. Phys. 86, 1189 (2014).ADSCrossRefGoogle Scholar
  2. 2.
    S. Stemmer and S. J. Allen, Ann. Rev. Mater. Res. 44, 151 (2014).ADSCrossRefGoogle Scholar
  3. 3.
    P. Zubko, S. Gariglio, M. Gabay, P. Ghosez, and J.-M. Triscone, Ann. Rev. Condens. Matter Phys. 2, 141 (2011).ADSCrossRefGoogle Scholar
  4. 4.
    J. A. Noland, Phys. Rev. 94, 724 (1954).ADSCrossRefGoogle Scholar
  5. 5.
    A. Ohtomo and H. Y. Hwang, Nature 427, 423 (2004).ADSCrossRefGoogle Scholar
  6. 6.
    Y. Xie, C. Bell, Y. Hikita, S. Harashima, and H. Y. Hwang, Adv. Mater. 25, 4735 (2013).CrossRefGoogle Scholar
  7. 7.
    N. Nakagawa, H. Y. Hwang, and D. A. Muller, Nature Mater. 5, 204 (2006).ADSCrossRefGoogle Scholar
  8. 8.
    C. He, T. D. Sanders, M. T. Gray, F. J. Wong, V. V. Mehta, and Y. Suzuki, Phys. Rev. B 86, 081401 (2012).ADSCrossRefGoogle Scholar
  9. 9.
    A. Annadi, A. Putra, Z. Q. Liu, X. Wang, K. Gopinadhan, Z. Huang, S. Dhar, T. Venkatesan, Phys. Rev. B 86, 085450 (2012).ADSCrossRefGoogle Scholar
  10. 10.
    P. Perna, D. Maccariello, M. Radovic, U. Scotti di Uccio, I. Pallecchi, M. Codda, D. Marr, C. Cantoni, J. Gazquez, M. Varela, S. J. Pennycook, and F. M. Granozio, Appl. Phys. Lett. 97, 152111 (2010).ADSCrossRefGoogle Scholar
  11. 11.
    R. Ohtsuka, M. Matvejeff, K. Nishio, R. Takahashi, and M. Lippmaa, Appl. Phys. Lett. 96, 192111 (2010).ADSCrossRefGoogle Scholar
  12. 12.
    S. Thiel, G. Hammerl, A. Schmehl, C. W. Schneider, and J. Mannhart, Science 313, 1942 (2006).ADSCrossRefGoogle Scholar
  13. 13.
    M. Hosoda, C. Bell, Y. Hikita, and H. Y. Hwang, Appl. Phys. Lett. 102, 091601 (2013).ADSCrossRefGoogle Scholar
  14. 14.
    M. Boucherit, O. Shoron, C. A. Jackson, T. A. Cain, M. L. C. Buffon, C. Polchinski, S. Stemmer, and S. Rajan, Appl. Phys. Lett. 104, 182904 (2014).ADSCrossRefGoogle Scholar
  15. 15.
    K. Ueno, S. Nakamura, H. Shimotani, A. Ohtomo, N. Kimura, T. Nojima, H. Aoki, Y. Iwasa, and M. Kawasaki, Nature Mater. 7, 855 (2008).ADSCrossRefGoogle Scholar
  16. 16.
    P. Gallagher, M. Lee, J. R. Williams, and D. Goldhaber-Gordon, Nature Phys. 10, 748 (2014).ADSCrossRefGoogle Scholar
  17. 17.
    B. Jalan, S. Stemmer, S. Mack, and S. J. Allen, Phys. Rev. B 82, 081103 (2010).ADSCrossRefGoogle Scholar
  18. 18.
    Y. Kozuka, M. Kim, H. Ohta, Y. Hikita, C. Bell, and H. Y. Hwang, Appl. Phys. Lett. 97, 222115 (2010).ADSCrossRefGoogle Scholar
  19. 19.
    A. M. Kaiser, A. X. Gray, G. Conti, B. Jalan, A. P. Kajdos, A. Gloskovskii, S. Ueda, Y. Yamashita, K. Kobayashi, W. Drube, S. Stemmer, and C. S. Fadley, Appl. Phys. Lett. 100, 261603 (2012).ADSCrossRefGoogle Scholar
  20. 20.
    M. Minohara, Y. Hikita, C. Bell, H. Inoue, M. Hosoda, H. K. Sato, H. Kumigashira, M. Oshima, E. Ikenaga, and H. Y. Hwang, arXiv:1403.5594.Google Scholar
  21. 21.
    Y. Yamada, H. K. Sato, Y. Hikita, H. Y. Hwang, and Y. Kanemitsu, Appl. Phys. Lett. 104, 151907 (2014).ADSCrossRefGoogle Scholar
  22. 22.
    A. Dubroka, M. Rössle, K. W. Kim, V. K. Malik, L. Schultz, S. Thiel, C. W. Schneider, J. Mannhart, G. Herranz, O. Copie, M. Bibes, A. Barthélémy, and C. Bernhard, Phys. Rev. Lett. 104, 156807 (2010).ADSCrossRefGoogle Scholar
  23. 23.
    P. Moetakef, T. A. Cain, D. G. Ouellette, J. Y. Zhang, D. O. Klenov, A. Janotti, C. G. van de Walle, S. Rajan, S. J. Allen, and S. Stemmer, Appl. Phys. Lett. 99, 232116 (2011).ADSCrossRefGoogle Scholar
  24. 24.
    G. Khalsa and A. H. MacDonald, Phys. Rev. B 86, 125121 (2012).ADSCrossRefGoogle Scholar
  25. 25.
    M. Stengel, Phys. Rev. Lett. 106, 136803 (2011).ADSCrossRefGoogle Scholar
  26. 26.
    W.-J. Son, E. Cho, B. Lee, J. Lee, and S. Han, Phys. Rev. B 79, 245411 (2009).ADSCrossRefGoogle Scholar
  27. 27.
    S. Y. Park and A. J. Millis, Phys. Rev. B 87, 205145 (2013).ADSCrossRefGoogle Scholar
  28. 28.
    J. T. Haraldsen, P. Wölfle, and A. V. Balatsky, Phys. Rev. B 85, 134501 (2012).ADSCrossRefGoogle Scholar
  29. 29.
    H. Fu, K. V. Reich, and B. I. Shklovskii, Phys. Rev. B 92, 035204 (2015).ADSCrossRefGoogle Scholar
  30. 30.
    K. V. Reich, M. Schecter, and B. I. Shklovskii, Phys. Rev. B 91, 115303 (2015).ADSCrossRefGoogle Scholar
  31. 31.
    V. Ginzburg, J. Phys. USSR 10, 107 (1946).Google Scholar
  32. 32.
    L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 5: Statistical Mechanics, Part 1 (Butterworth–Heinemann, Oxford, 1980).Google Scholar
  33. 33.
    L. H. Thomas, Math. Proc. Cambridge Phil. Soc. 23, 542 (1927).ADSCrossRefGoogle Scholar
  34. 34.
    S. E. Rowley, L. J. Spalek, R. P. Smith, M. P. M. Dean, M. Itoh, J. F. Scott, G. G. Lonzarich, and S. S. Saxena, Nature Phys. 10, 367 (2014).ADSCrossRefGoogle Scholar
  35. 35.
    I.-S. Kim, M. Itoh, and T. Nakamura, J. Solid State Chem. 101, 77 (1992).ADSCrossRefGoogle Scholar
  36. 36.
    P. Moetakef, C. A. Jackson, J. Hwang, L. Balents, S. J. Allen, and S. Stemmer, Phys. Rev. B 86, 201102 (2012).ADSCrossRefGoogle Scholar
  37. 37.
    C. A. Jackson and S. Stemmer, Phys. Rev. B 88, 180403 (2013).ADSCrossRefGoogle Scholar
  38. 38.
    E. Mikheev, C. R. Freeze, B. J. Isaac, T. A. Cain, and S. Stemmer, Phys. Rev. B 91, 165125 (2015).ADSCrossRefGoogle Scholar
  39. 39.
    Y. Kozuka, M. Kim, C. Bell, B. G. Kim, Y. Hikita, and H. Y. Hwang, Nature 462, 487 (2009).ADSCrossRefGoogle Scholar
  40. 40.
    B. Jalan, S. Stemmer, S. Mack, and S. J. Allen, Phys. Rev. B 82, 081103 (2010).ADSCrossRefGoogle Scholar
  41. 41.
    A. Ohtomo, D. A. Muller, J. L. Grazul, and H. Y. Hwang, Nature 419, 378 (2002).ADSCrossRefGoogle Scholar
  42. 42.
    Y. J. Chang, L. Moreschini, A. Bostwick, G. A. Gaines, Y. S. Kim, A. L. Walter, B. Freelon, A. Tebano, K. Horn, and E. Rotenberg, Phys. Rev. Lett. 111, 126401 (2013).ADSCrossRefGoogle Scholar
  43. 43.
    W. S. Woo Seok Choi, S. Suyoun Lee, V. R. Valentino, R. Cooper, and H. N. Ho Nyung Lee, Nano Lett. 12, 4590 (2012).CrossRefGoogle Scholar
  44. 44.
    K. Szot, W. Speier, R. Carius, U. Zastrow, and W. Beyer, Phys. Rev. Lett. 88, 075508 (2002).ADSCrossRefGoogle Scholar
  45. 45.
    D. D. Cuong, B. Lee, K. M. Choi, H.-S. Ahn, S. Han, and J. Lee, Phys. Rev. Lett. 98, 115503 (2007).ADSCrossRefGoogle Scholar
  46. 46.
    D. A. Muller, N. Nakagawa, A. Ohtomo, J. L. Grazul, and H. Y. Hwang, Nature (London) 430, 657 (2004).ADSCrossRefGoogle Scholar
  47. 47.
    C. Cen, S. Thiel, G. Hammerl, C. W. Schneider, K. E. Andersen, C. S. Hellberg, J. Mannhart, and J. Levy, Nature Mater. 7, 298 (2008).ADSCrossRefGoogle Scholar
  48. 48.
    F. Bi, D. F. Bogorin, C. Cen, C. W. Bark, J.-W. Park, C.-B. Eom, and J. Levy, Appl. Phys. Lett. 97, 173110 (2010).ADSCrossRefGoogle Scholar
  49. 49.
    L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 3: Quantum Mechanics: Non-Relativistic Theory (Butterworth–Heinemann, Oxford, 1991).Google Scholar
  50. 50.
    I. Pomeranchuk and Y. Smorodinsky, J. Phys. USSR 9, 97 (1945)Google Scholar
  51. 50a.
    Y. B. Zeldovich and V. S. Popov, Sov. Phys. Usp. 14, 673 (1972).ADSCrossRefGoogle Scholar
  52. 51.
    E. B. Kolomeisky, J. P. Straley, and H. Zaidi, Phys. Rev. B 88, 165428 (2013).ADSCrossRefGoogle Scholar
  53. 52.
    M. M. Fogler, D. S. Novikov, and B. I. Shklovskii, Phys. Rev. B 76, 233402 (2007)ADSCrossRefGoogle Scholar
  54. 52a.
    D. S. Novikov, Phys. Rev. B 76, 245435 (2007)ADSCrossRefGoogle Scholar
  55. 52b.
    A. V. Shytov, M. I. Katsnelson, and L. S. Levitov, Phys. Rev. Lett. 99, 246802 (2007)ADSCrossRefGoogle Scholar
  56. 52c.
    V. M. Pereira, J. Nilsson, and A. H. C. Neto, Phys. Rev. Lett. 99, 166802 (2007)ADSCrossRefGoogle Scholar
  57. 52d.
    A. Gorsky and F. Popov, Phys. Rev. D 89, 061702 (2014)ADSCrossRefGoogle Scholar
  58. 52e.
    Y. Wang, V. W. Brar, A. V. Shytov, Q. Wu, W. Regan, H.-Z. Tsai, A. Zettl, L. S. Levitov, and M. F. Crommie, Nature Phys. 8, 653 (2012).ADSCrossRefGoogle Scholar
  59. 53.
    A. B. Migdal, V. S. Popov, and D. N. Voskresenskii, Sov. Phys. JETP 45, 436 (1977).ADSGoogle Scholar
  60. 54.
    D. van der Marel, J. van Mechelen, and I. Mazin, Phys. Rev. B 84, 205111 (2011).ADSCrossRefGoogle Scholar
  61. 55.
    F. W. Lytle, J. Appl. Phys. 35, 2212 (1964).ADSCrossRefGoogle Scholar
  62. 56.
    M. Itoh, R. Wang, Y. Inaguma, T. Yamaguchi, Y.-J. Shan, and T. Nakamura, Phys. Rev. Lett. 82, 3540 (1999).ADSCrossRefGoogle Scholar
  63. 57.
    J. Frenkel, Z. Phys. 51, 232 (1928).ADSCrossRefGoogle Scholar
  64. 58.
    Y. Kozuka, Y. Hikita, C. Bell, and H. Y. Hwang, Appl. Phys. Lett. 97, 012107 (2010).ADSCrossRefGoogle Scholar
  65. 59.
    S. H. Wemple, Phys. Rev. A 137, 1575 (1965).ADSCrossRefGoogle Scholar
  66. 60.
    Y. Kozuka, M. Kim, H. Ohta, Y. Hikita, C. Bell, and H. Y. Hwang, Appl. Phys. Lett. 97, 222115 (2010).ADSCrossRefGoogle Scholar
  67. 61.
    P. Xu, D. Phelan, J. S. Jeong, K. A. Mkhoyan, and B. Jalan, Appl. Phys. Lett. 104, 082109 (2014).ADSCrossRefGoogle Scholar
  68. 62.
    P. A. Xu, T. C. Droubay, J. S. Jeong, S. A. Chambers, A. K. Mkhoyan, and B. Jalan, in Proceedings of the Amer. Phys. Soc. APS March Meeting, San Antonio, TX, March 2–6, 2015, A13.00003.Google Scholar
  69. 63.
    M. L. Reinle-Schmitt et al., Nature Commun. 3, 932 (2012).ADSCrossRefGoogle Scholar
  70. 64.
    A. Janotti, L. Bjaalie, L. Gordon, and C. G. van de Walle, Phys. Rev. B 86, 241108 (2012).ADSCrossRefGoogle Scholar
  71. 65.
    J. R. S. Nascimento, I. Cho, and A. Vilenkin, Phys. Rev. D 60, 083505 (1999).ADSCrossRefGoogle Scholar
  72. 66.
    L. Onsager, private communication to G. S. Manning (1967)Google Scholar
  73. 66a.
    G. S. Manning, J. Chem. Phys. 51, 924 (1969).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2016

Authors and Affiliations

  1. 1.Fine Theoretical Physics InstituteUniversity of MinnesotaMinneapolisUSA
  2. 2.Ioffe Physicotechnical InstituteRussian Academy of SciencesSt. PetersburgRussia

Personalised recommendations