Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Breatherlike defects and their dynamics in the one-dimensional roll structure of twisted nematics

  • 36 Accesses

  • 3 Citations

Abstract

The dynamics of the nonsingular defects in the periodic structures of the rolls that appear in π/2-twisted nematic liquid crystals during electroconvection is studied experimentally and theoretically. The roll structures in twisted nematics are characterized by the presence of an axial component of the hydrodynamic flow velocity with opposite directions in neighboring rolls. The critical oscillation frequency of structural defects is quantitatively estimated using a nonlinear equation of motion for roll displacements. It is found that a pair of edge dislocations with topological charges of +1 and–1 nucleates and annihilates periodically during the oscillations of a defect with a nonsingular core. Oscillating defects with a zero topological charge is shown to correspond to the solution of the sine-Gordon equation in the form of standing breathers. Asymmetry is detected in the full oscillation cycle of a breather defect, and it is related to the twist symmetry of a twist nematic. This asymmetry is taken into account as effective anisotropic friction. The behavior of a breather on a trap, namely, a classical defect (dislocation), is investigated. Dislocation motion is shown to be anisotropic in the oscillation cycle: in one direction, a dislocation moves regularly; in the second phase, the transition into the initial state proceeds via the decay of the breather into a dipole pair of dislocations of opposite signs followed by their annihilation.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    P. G. de Gennes and J. Prost, The Physics of Liquid Crystals (Clarendon, Oxford, 1994).

  2. 2.

    M. Kleman, Points, Lines and Walls in Liquid Crystals, Magnetic Systems and Various Ordered Media (Wiley, Chichester, 1983).

  3. 3.

    M. V. Kurik and O. D. Lavrentovich, Sov. Phys.—Usp. 31 (3), 196 (1988).

  4. 4.

    Defects in Liquid Crystals: Computer Simulations, Theory and Experiments, Ed. by O. D. Lavrentovich, P. Pasini, S. Zannoni, and S. Zumer (Kluwer Academic, Dordrecht, The Netherlands, 2001).

  5. 5.

    P. V. Dolganov, V. M. Zhilin, V. K. Dolganov, and E. I. Kats, JETP Lett. 89 (3), 161 (2009).

  6. 6.

    O. A. Skaldin and Yu. I. Timirov, JETP Lett. 90 (9), 633 (2009).

  7. 7.

    E. G. Ekomasov, R. R. Murtazin, and V. N. Nazarov, Phys. Met. Metallogr. 115 (2), 117 (2014).

  8. 8.

    S. A. Pikin, Structural Transformations in Liquid Crystals (Nauka, Moscow, 1981; Gordon and Breach, London, 1991).

  9. 9.

    Pattern Formation in Liquid Crystals, Ed. by A. Buka and L. Kramer (Springer-Verlag, New York, 1996).

  10. 10.

    A. Weber, E. Bodenschatz, and L. Kramer, Adv. Mater. (Weinheim) 3, 191 (1991).

  11. 11.

    H. Yamazaki, S. Kai, and K. Hirakawa, J. Phys. Soc. Jpn. 56, 1 (1987).

  12. 12.

    S. Kai, N. Chizumi, and M. Kohno, J. Phys. Soc. Jpn. 58, 3541 (1989).

  13. 13.

    S. Nasuno, S. Takeuchi, and Y. Sawada, Phys. Rev. A: At., Mol., Opt. Phys. 40, 3457 (1989).

  14. 14.

    S. Rasenat, V. Steinberg, and I. Rehberg, Phys. Rev. A: At., Mol., Opt. Phys. 42, 5998 (1990).

  15. 15.

    E. Bodenschatz, W. Zimmermann, and L. Kramer, J. Phys. (Paris) 49, 1875 (1988).

  16. 16.

    E. Bodenschatz, W. Pesch, and L. Kramer, Physica D (Amsterdam) 32, 135 (1988).

  17. 17.

    L. Kramer, E. Bodenschatz, W. Pesch, W. Thom, and W. Zimmermann, Liq. Cryst. 5, 699 (1989).

  18. 18.

    L. Kramer, E. Bodenschatz, and W. Pesch, Phys. Rev. Lett. 64, 2588 (1990).

  19. 19.

    E. Bodenschatz, W. Pesch, and L. Kramer, J. Stat. Phys. 64, 1007 (1991).

  20. 20.

    T. A. Kontorova and Ya. I. Frenkel’, Zh. Eksp. Teor. Fiz. 8,89,1340, 1349 (1938).

  21. 21.

    O. M. Braun and Y. S. Kivshar, The Frenkel–Kontorova Model: Concepts, Methods, and Applications (Springer-Verlag, New York, 2004).

  22. 22.

    A. V. Ustinov, M. Cirillo, and B. A. Malomed, Phys. Rev. B: Condens. Matter 47, 8357 (1993).

  23. 23.

    H. S. J. van der Zant, T. P. Orlando, S. Watanabe, and S. H. Strogats, Phys. Rev. Lett. 74, 174 (1995).

  24. 24.

    R. A. Cowley, J. D. Axe, and M. Iizumi, Phys. Rev. Lett. 36, 806 (1976).

  25. 25.

    A. R. Bishop and W. F. Lewis, J. Phys. C: Solid State Phys. 12, 3811 (1979).

  26. 26.

    A. C. Kovalev, Low Temp. Phys. 20 (10), 815 (1994).

  27. 27.

    I. F. Lyuksyutov, A. G. Naumovets, and V. L. Pokrovskii, Two-Dimensional Crystals (Naukova Dumka, Kiev, 1988; Academic, New York, 1992).

  28. 28.

    J. de la Figuera, K. Pohl, O. R. de la Fuente, A. K. Schmid, N. C. Bartelt, C. B. Carter, and R. Q. Hwang, Phys. Rev. Lett. 86, 3819 (2001).

  29. 29.

    A. N. Chuvyrov, O. A. O. A. Scaldin, V. A. Delev, Yu. A. Lebedev, and E. S. Batyrshin, J. Exp. Theor. Phys. 103 (6), 926 (2006).

  30. 30.

    A. Hertrich, A. P. Krekhov, and O. A. Scaldin, J. Phys. II 4, 239 (1994).

  31. 31.

    V. A. Delev, P. Toth, and A. P. Krekhov, Mol. Cryst. Liq. Cryst. 351, 179 (2000).

  32. 32.

    G. R. Yakupova and O. A. Skaldin, Tech. Phys. Lett. 29 (11), 892 (2003).

  33. 33.

    O. A. Skaldin, G. R. Yakupova, V. A. Delev, Yu. A. Lebedev, and A. A. Nazarov, Phys. Solid State 47 (2), 374 (2005).

  34. 34.

    A. Joets and R. Ribotta, J. Stat. Phys. 64, 981 (1991).

  35. 35.

    O. A. Skaldin, V. A. Delev, E. S. Shikhovtseva, E. S. Batyrshin, and Yu. A. Lebedev, JETP Lett. 93 (7), 388 (2011).

  36. 36.

    S. Frunza, R. Moldovan, T. Beica, M. Giurgea, and D. N. Stoenescu, Europhys. Lett. 20, 407 (1992).

  37. 37.

    R. H. Kraichnan, J. Fluid Mech. 67, 155 (1975).

  38. 38.

    E. S. Shikhovtseva, Physica A (Amsterdam) 303, 133 (2002).

  39. 39.

    E. S. Shikhovtseva, Physica A (Amsterdam) 349, 421 (2005).

  40. 40.

    G. L. Lamb, Rev. Mod. Phys. 43, 99 (1971).

  41. 41.

    R. Parmentier, in Solitons in Action, Ed. by K. Lonngren and E. Scott (Academic, New York, 1978; Mir, Moscow, 1981), pp. 185–209.

  42. 42.

    J. K. Perring and T. H. R. Skyrme, Nucl. Phys. 31, 550 (1962).

  43. 43.

    J. P. Hirth and J. Lothe, Theory of Dislocations (Willey, New York, 1982).

  44. 44.

    L. M. Blinov, Electro-Optical and Magneto-Optical Properties of Liquid Crystals (Nauka, Moscow, 1978; Wiley, New York, 1983).

  45. 45.

    E. S. Shikhovtsova and O. A. Ponomarev, JETP Lett. 64 (7), 509 (1996).

  46. 46.

    E. S. Shikhovtseva, Phys. Low-Dimens. Struct. 11/12, 77 (1999).

  47. 47.

    D. W. McLauglin and A. C. Scott, Phys. Rev. A: At., Mol., Opt. Phys. 18, 1652 (1978).

  48. 48.

    M. A. Shamsutdinov, I. Yu. Lomakina, V. N. Nazarov, A. T. Kharisov, and D. M. Shamsutdinov, Ferromagnetodynamics and Antiferromagnetodynamics: Nonlinear Oscillations, Waves, and Solitons (Nauka, Moscow, 2009) [in Russian].

  49. 49.

    O. A. Skaldin, V. A. Delev, and E. S. Shikhovtseva, JETP Lett. 97 (2), 92 (2013).

  50. 50.

    M. Dennin, D. S. Cannell, and G. Ahlers, Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 57, 638 (1998).

  51. 51.

    M. Scheuring, L. Kramer, and J. Peinke, Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 58, 2018 (1998).

  52. 52.

    E. S. Shikhovtseva and O. A. Ponomarev, Phys. Low- Dimens. Struct. 5/6, 43 (1998).

Download references

Author information

Correspondence to V. A. Delev.

Additional information

Original Russian Text © O.A. Skaldin, V.A. Delev, E.S. Shikhovtseva, Yu.A. Lebedev, E.S. Batyrshin, 2015, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2015, Vol. 148, No. 6, pp. 1232–1247.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Skaldin, O.A., Delev, V.A., Shikhovtseva, E.S. et al. Breatherlike defects and their dynamics in the one-dimensional roll structure of twisted nematics. J. Exp. Theor. Phys. 121, 1082–1095 (2015). https://doi.org/10.1134/S1063776115120158

Download citation

Keywords

  • Soliton
  • Topological Charge
  • Defect Core
  • Breather Solution
  • Anisotropic Friction