Advertisement

Journal of Experimental and Theoretical Physics

, Volume 121, Issue 3, pp 499–508 | Cite as

Nonequilibrium kinetics of the electron–phonon sybsystem of a crystal in a strong electric field as a base of the electroplastic effect

  • V. I. Karas
  • A. M. Vlasenko
  • V. I. Sokolenko
  • V. E. Zakharov
Electronic Properties of Solid

Abstract

We present the results of a kinetic analysis of nonequilibrium dynamics of the electron–phonon system of a crystal in a strong electric field based on the proposed method of numerically solving a set of Boltzmann equations for electron and phonon distribution functions without expanding the electron distribution function into a series in the phonon energy. It is shown that the electric field action excites the electron subsystem, which by transferring energy to the phonon subsystem creates a large amount of short-wave phonons that effectively influence the lattice defects (point, lines, boundaries of different phases), which results in a redistribution of and decrease in the lattice defect density, in damage healing, in a decrease in the local peak stress, and a decrease in the degradation level of the construction material properties.

Keywords

Time Instant Electric Field Strength Strong Electric Field Electron Distribution Function Current Pulse Duration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. I. Spitsyn and O. A. Troitskii, Electroplastic Deformation of Metals (Nauka, Moscow, 1985) [in Russian].Google Scholar
  2. 2.
    V. V. Stolyarov, Vestn. Nauchno–Tekh. Razvit. 67, 35 (2013).Google Scholar
  3. 3.
    V. I. Karas and I. F. Potapenko, Vopr. At. Nauki Tekh., Ser.: Fiz. Radiats. Povrezhdeniy Radiats. Materialoved. 4–2 (62), 150 (2009).Google Scholar
  4. 4.
    V. E. Zakharov and V. I Karas, Phys.—Usp. 56 (1), 49 (2013).CrossRefADSGoogle Scholar
  5. 5.
    V. E. Zakharov, V. I. Karas, and A. M. Vlasenko, in Proceedings of the International Conference MSS-14 “Mode Conversion, Coherent Structures, and Turbulence,” Space Research Institute of the Russian Academy of Sciences, Moscow, Russia, November 24–27, 2014 (Lenand, Moscow, 2014), p. 34.Google Scholar
  6. 6.
    V. I. Karas, A. M. Vlasenko, A. G. Zagorodny, and V. I. Sokolenko, in Proceedings of the International Conference MSS-14 “Mode Conversion, Coherent Structures, and Turbulence,” Space Research Institute of the Russian Academy of Sciences, Moscow, Russia, November 24–27, 2014 (Lenand, Moscow, 2014), p. 64.Google Scholar
  7. 7.
    I. M. Neklyudov and N. V. Kamyshanchenko, Physical Foundations of Metal Strength and Plasticity, Part 2: Defects in Crystals (Belgorod State University, Belgorod, 1997) [in Russian].Google Scholar
  8. 8.
    A. I. Landau and Yu. I. Gofman, Sov. Phys. Solid State 16 (11), 2220 (1974).Google Scholar
  9. 9.
    A. Granato and K. Lücke, J. Appl. Phys. 27, 583 (1956).MATHCrossRefADSGoogle Scholar
  10. 10.
    V. I. Dubinko, V. I. Karas, V. F. Klepikov, P. N. Ostapchuk, and I. F. Potapenko, Vopr. At. Nauki Tekh. Ser.: Fiz. Radiats. Povrezhdeniy Radiats. Materialoved. 4–2 (62), 158 (2009).Google Scholar
  11. 11.
    M. I. Kaganov, V. Ya. Kravchenko, and V. D. Natsik, Phys.—Usp. 16 (6), 878 (1974).CrossRefADSGoogle Scholar
  12. 12.
    N. Perrin and H. Budd, Phys. Rev. Lett. 28, 1701 (1972).CrossRefADSGoogle Scholar
  13. 13.
    F. G. Bass and Yu. G. Gurevich, Hot Electrons and Strong Electromagnetic Waves in Plasmas of Semiconductors and Gas Discharges (Nauka, Moscow, 1975) [in Russian].Google Scholar
  14. 14.
    V. P. Silin, Introduction to the Kinetic Theory of Gases (Librokom, Moscow, 2013) [in Russian].Google Scholar
  15. 15.
    L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Volume 10: E. M. Lifshitz and L. P. Pitayevskii, Physical Kinetics (Fizmatlit, Moscow, 2002; Butterworth–Heinemann, Oxford, 2005).Google Scholar
  16. 16.
    V. I. Karas’, I. F. Potapenko, and A. M. Vlasenko, Probl. At. Sci. Technol., Ser.: Plasma Electron. New Accel. Methods 86, 272 (2013).Google Scholar
  17. 17.
    V. I. Karas’, A. M. Vlasenko, and V. I. Sokolenko, in Abstracts of Papers of the 55th International Conference “Actual Problems of Strength,” National Science Center Kharkov Institute of Physics and Technology, Kharkiv, Ukraine, June 9–13, 2014 (Kharkiv, 2014), p. 14.Google Scholar
  18. 18.
    V. P. Lebedev and S. V. Savich, Visn. Khark. Nats. Univ. im. V. N. Karazina, Ser.: Fiz. 962, 88 (2011).Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2015

Authors and Affiliations

  • V. I. Karas
    • 1
    • 2
  • A. M. Vlasenko
    • 1
  • V. I. Sokolenko
    • 1
  • V. E. Zakharov
    • 3
    • 4
  1. 1.National Science Center “Kharkov Institute of Physics and Technology,”National Academy of Sciences of UkraineKharkovUkraine
  2. 2.Karazin Kharkov National UniversityKharkovUkraine
  3. 3.Lebedev Physical InstituteRussian Academy of SciencesMoscowRussia
  4. 4.Landau Institute for Theoretical PhysicsRussian Academy of SciencesChernogolovka, Moscow oblastRussia

Personalised recommendations