Journal of Experimental and Theoretical Physics

, Volume 121, Issue 2, pp 279–288 | Cite as

Surface origin of quasi-2D Shubnikov–de Haas oscillations in Bi2Te2Se

  • A. A. KapustinEmail author
  • V. S. Stolyarov
  • S. I. Bozhko
  • D. N. Borisenko
  • N. N. Kolesnikov
Electronic Properties of Solid


Transport measurements at liquid helium temperatures were done on a number of Bi2Te2Se samples with thicknesses ranging from 30 to 200 μm in order to detect surface states. In each sample we observed Shubnikov–de Haas (SdH) oscillations and sublinear dependence of off-diagonal component of magnetoresistance tensor on magnetic field. The periods of SdH oscillations in inverse magnetic field were found to be the same within 15%. The positions of SdH oscillations are determined by the normal to surface component of magnetic field. We found that the measured conductivity can be well described by a model with two groups of electrons, 2D and 3D. The conductivity of 2D electrons was found to be relatively weakly varying from sample to sample and not depending on thickness in a systematic manner. This behavior can be explained only by their localization on the surface. Comparison of the results of magnetotransport measurements with our scanning tunneling spectroscopy results on atomically smooth Bi2Te2Se surface in ultrahigh vacuum led us to conclude that the surface electrons are separated from the bulk electrons by a depletion layer approximately 100 nm thick. This effect could provide the dominant contribution of surface electrons to conductivity in samples with thicknesses less than 200 nm.


Sheet Resistance Depletion Layer Topological Insulator Dirac Cone Surface Carrier 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. M. Gol’tsman, V. A. Kudinov, and I. A. Smirnov, Semiconducting Thermoelectric Materials Based on Bi 2 Te 3 (Nauka, Moscow, 1972) [in Russian].Google Scholar
  2. 2.
    L. Fu and C. L. Kane, Phys. Rev. B: Condens. Matter 76, 045302 (2007).CrossRefADSGoogle Scholar
  3. 3.
    Y. Ando, J. Phys. Soc. Jpn. 82, 102001 (2013).CrossRefGoogle Scholar
  4. 4.
    H. Zhang, C.-X. Liu, X.-L. Qi, X. Dai, Z. Fang, and S.-C. Zhang, Nat. Phys. 5, 438 (2009).CrossRefGoogle Scholar
  5. 5.
    Y. Xia, D. Qian, D. Hsieh, L. Wray, A. Pal, H. Lin, A. Bansil, D. Grauer, Y. S. Hor, R. J. Cava, and M. Z. Hasan, Nat. Phys. 5, 398 (2009).CrossRefGoogle Scholar
  6. 6.
    Y. L. Chen, J. G. Analytis, J.-H. Chu, Z. K. Liu, S.-K. Mo, X. L. Qi, H. J. Zhang, D. H. Lu, X. Dai, Z. Fang, S. C. Zhang, I. R. Fisher, Z. Hussain, and Z.-X. Shen, Science (Washington) 325, 178 (2009).CrossRefADSGoogle Scholar
  7. 7.
    K. Miyamoto, A. Kimura, T. Okuda, H. Miyahara, K. Kuroda, H. Namatame, M. Taniguchi, S. V. Eremeev, T. V. Menshchikova, E. V. Chulkov, K. A. Kokh, and O. E. Tereshchenko, Phys. Rev. Lett. 109, 166802 (2012).CrossRefADSGoogle Scholar
  8. 8.
    T. Zhang, P. Cheng, X. Chen, J.-F. Jia, X. Ma, K. He, L. Wang, H. Zhang, X. Dai, Z. Fang, X. Xie, and Q.-K. Xue, Phys. Rev. Lett. 103, 266803 (2009).CrossRefADSGoogle Scholar
  9. 9.
    S. Kim, S. Yoshizawa, Y. Ishida, K. Eto, K. Segawa, Y. Ando, S. Shin, and F. Komori, Phys. Rev. Lett. 112, 136802 (2014).CrossRefADSGoogle Scholar
  10. 10.
    J. Chen, X. Y. He, K. H. Wu, Z. Q. Ji, L. Lu, J. R. Shi, J. H. Smet, and Y. Q. Li, Phys. Rev. B: Condens. Matter 83, 241304(R) (2011).CrossRefADSGoogle Scholar
  11. 11.
    D.-X. Qu, Y. S. Hor, J. Xiong, R. J. Cava, and N. P. Ong, Science (Washington) 329, 821 (2010).CrossRefADSGoogle Scholar
  12. 12.
    J. G. Analytis, R. D. McDonald, S. C. Riggs, J.-H. Chu, G. S. Boebinger, and I. R. Fisher, Nat. Phys. 6, 960 (2010).CrossRefGoogle Scholar
  13. 13.
    Z. Ren, A. A. Taskin, S. Sasaki, K. Segawa, and Y. Ando, Phys. Rev. B: Condens. Matter 82, 241306(R) (2010).CrossRefADSGoogle Scholar
  14. 14.
    A. A. Taskin, S. Sasaki, K. Segawa, and Y. Ando, Phys. Rev. Lett. 109, 066803 (2012).CrossRefADSGoogle Scholar
  15. 15.
    N. Bansal, Y. S. Kim, M. Brahlek, E. Edrey, and S. Oh, Phys. Rev. Lett. 109, 116804 (2012).CrossRefADSGoogle Scholar
  16. 16.
    P. Gehring, B. Gao, M. Burghard, and K. Kern, Appl. Phys. Lett. 101, 023116 (2012).CrossRefADSGoogle Scholar
  17. 17.
    M. V. Golubkov, YU. I. Gorina, G. A. Kalyuzhnaya, D. A. Knyazev, T. A. Romanova, V. V. Rodin, A. V. Sadakov, N. N. Sentyurina, V. A. Stepanov, S. G. Chernook, and S. I. Vedeneev, JETP Lett. 98 (8), 475 (2013).CrossRefADSGoogle Scholar
  18. 18.
    K. Eto, Z. Ren, A. A. Taskin, K. Segawa, and Y. Ando, Phys. Rev. B: Condens. Matter 81, 195309 (2010).CrossRefADSGoogle Scholar
  19. 19.
    J. Xiong, A. C. Petersen, D. Qu, Y. S. Hor, R. J. Cava, and N. P. Ong, Physica E (Amsterdam) 44, 917 (2012).CrossRefADSGoogle Scholar
  20. 20.
    G. L. Belen’kii, M. O. Godzhaev, and V. N. Zverev, JETP Lett. 43 (12), 769 (1986).ADSGoogle Scholar
  21. 21.
    G. L. Belen’kii, E. A. Vyrodov, and V. N. Zverev, Sov. Phys. JETP 67 (12), 2548 (1988).Google Scholar
  22. 22.
    N. A. Abdullaev, S. Sh. Kakhramanov, T. G. Kerimova, K. M. Mustafayeva, and S. A. Nemov, Semiconductors 43 (2), 145 (2009).CrossRefADSGoogle Scholar
  23. 23.
    H. Cao, J. Tian, I. Miotkowski, T. Shen, J. Hu, S. Qiao, and Y. P. Chen, Phys. Rev. Lett. 108, 216803 (2012).CrossRefADSGoogle Scholar
  24. 24.
    Y. Xu, I. Miotkowski, C. Liu, J. Tian, H. Nam, N. Alidoust, J. Hu, C.-K. Shih, M. Z. Hasan, and Y. P. Chen, Nat. Phys. 10, 956 (2014).CrossRefGoogle Scholar
  25. 25.
    N. N. Kolesnikov, E. B. Borisenko, D. N. Borisenko, and V. K. Gartman, J. Cryst. Growth 300, 294 (2007).CrossRefADSGoogle Scholar
  26. 26.
    J. Ziman, Principles of the Theory of Solids (Cambridge University Press, Cambridge, 1972; Mir, Moscow, 1974), pp. 283–287.Google Scholar
  27. 27.
    H. Fukuyama, J. Phys. Soc. Jpn. 52, 18 (1983).MathSciNetCrossRefADSGoogle Scholar
  28. 28.
    C. J. Chen, Introduction to Scanning Tunneling Microscopy (Oxford University Press, Oxford, 2008), p. 337.Google Scholar
  29. 29.
    S. Urazhdin, D. Bilc, S. D. Mahanti, S. H. Tessmer, Theodora Kyratsi, and M. G. Kanatzidis, Phys. Rev. B: Condens. Matter 69, 085313 (2004).CrossRefADSGoogle Scholar
  30. 30.
    Z. Alpichshev, J. G. Analytis, J.-H. Chu, I. R. Fisher, Y. L. Chen, Z. X. Shen, A. Fang, and A. Kapitulnik, Phys. Rev. Lett. 104, 016401 (2010).CrossRefADSGoogle Scholar
  31. 31.
    M. Nurmamat, E. E. Krasovskii, K. Kuroda, M. Ye, K. Miyamoto, M. Nakatake, T. Okuda, H. Namatame, M. Taniguchi, E. V. Chulkov, K. A. Kokh, O. E. Tereshchenko, and A. Kimura, Phys. Rev. B: Condens. Matter 88, 081301(R) (2013).CrossRefADSGoogle Scholar
  32. 32.
    S. Jia, H. Beidenkopf, I. Drozdov, M. K. Fuccillo, J. Seo, J. Xiong, N. P. Ong, A. Yazdani, and R. J. Cava, Phys. Rev. B: Condens. Matter 86, 165119 (2012).CrossRefADSGoogle Scholar
  33. 33.
    J. Xiong, Y. Luo, Y. Khoo, S. Jia, R. J. Cava, and N. P. Ong, Phys. Rev. B: Condens. Matter 86, 045314 (2012).CrossRefADSGoogle Scholar
  34. 34.
    C. Chen, S. He, H. Weng, W. Zhang, L. Zhao, H. Liu, X. Jia, D. Mou, S. Liu, J. He, Y. Peng, Y. Feng, Z. Xie, G. Liu, X. Dong, et al., Proc. Natl. Acad. Sci. USA 109, 3694 (2012).CrossRefADSGoogle Scholar
  35. 35.
    K. Hoefer, C. Becker, D. Rata, J. Swanson, P. Thalmeier, and L. H. Tjeng, Proc. Natl. Acad. Sci. USA 111, 14979 (2014).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2015

Authors and Affiliations

  • A. A. Kapustin
    • 1
    Email author
  • V. S. Stolyarov
    • 1
    • 2
    • 3
  • S. I. Bozhko
    • 1
  • D. N. Borisenko
    • 1
  • N. N. Kolesnikov
    • 1
  1. 1.Institute of Solid State PhysicsRussian Academy of SciencesChernogolovka, Moscow oblastRussia
  2. 2.Moscow Institute of Physics and TechnologyDolgoprudnyi, Moscow oblastRussia
  3. 3.Kazan Federal UniversityKazanRussia

Personalised recommendations