Advertisement

Secondary laser cooling of strontium-88 atoms

  • S. A. Strelkin
  • K. Yu. KhabarovaEmail author
  • A. A. Galyshev
  • O. I. Berdasov
  • A. Yu. Gribov
  • N. N. Kolachevsky
  • S. N. Slyusarev
Atoms, Molecules, Optics

Abstract

The secondary laser cooling of a cloud of strontium-88 atoms on the 1 S 03 P 1 (689 nm) intercombination transition captured into a magneto-optical trap has been demonstrated. We describe in detail the recapture of atoms from the primary trap operating on the strong 1 S 01 P 1 (461 nm) transition and determine the recapture coefficient κ, the number of atoms, and their temperature in the secondary trap as a function of experimental parameters. A temperature of 2 µK has been reached in the secondary trap at the recapture coefficient κ = 6%, which confirms the secondary cooling efficiency and is sufficient to perform metrological measurements of the 1 S 03 P 1 (698 nm) clock transition in an optical lattice.

Keywords

Strontium Optical Lattice Laser Cool Secondary Cool Magneto Optical Trap 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Blatt, A. D. Ludlow, G. K. Campbell, J. W. Thomsen, T. Zelevinsky, M. M. Boyd, J. Ye, X. Baillard, M. Fouché, R. Le Targat, A. Brusch, P. Lemonde, M. Takamoto, F.-L. Hong, H. Katori, et al., Phys. Rev. Lett. 100, (14) 140801 (2008).ADSCrossRefGoogle Scholar
  2. 2.
    N. Hinkley, J. A. Sherman, N. B. Phillips, M. Schioppo, N. D. Lemke, K. Beloy, M. Pizzocaro, C. W. Oates, and A. D. Ludlow, Science (Washington) 341 (6151), 1215 (2013).ADSCrossRefGoogle Scholar
  3. 3.
    B. J. Bloom, T. L. Nicholson, J. R. Williams, S. L. Campbell, M. Bishof, X. Zhang, W. Zhang, S. L. Bromley, and J. Ye, Nature (London) 506 (7486), 71 (2014).ADSCrossRefGoogle Scholar
  4. 4.
    G. K. Campbell, A. D. Ludlow, S. Blatt, J. W. Thomsen, M. J. Martin, M. H. G. de Miranda, T. Zelevinsky, M. M. Boyd, J. Ye, S. A. Diddams, T. P. Heavner, T. E. Parker, and S. R. Jefferts, Metrologia 45, (5) 539 (2008).ADSCrossRefGoogle Scholar
  5. 5.
    M. Takamoto, F. L. Hong, R. Higashi, and H. Katori, Nature (London) 435 (7040), 321 (2005).ADSCrossRefGoogle Scholar
  6. 6.
    H. Katori, M. Takamoto, V. G. Pal’chikov, and V. D. Ovsiannikov, Phys. Rev. Lett. 91, (17) 173005 (2003).ADSCrossRefGoogle Scholar
  7. 7.
    Z. W. Barber, C. W. Hoyt, C. W. Oates, L. Hollberg, A. V. Taichenachev, and V. I. Yudin, Phys. Rev. Lett. 96, (8) 083002 (2006).ADSCrossRefGoogle Scholar
  8. 8.
    A. D. Ludlow, Ph. D. Theses, University of Colorado (Boulder, Colorado, United States, 2008). http://jila.colorado.edu/yelabs/pubs/theses/2008/theses_2008_AndrewLudlow.pdf.Google Scholar
  9. 9.
    H. J. Metcalf and P. van der Straten, J. Opt. Soc. Am. B 20, 887 (2003).ADSCrossRefGoogle Scholar
  10. 10.
    D. D. Sukachev, E. S. Kalganova, A. V. Sokolov, S. A. Fedorov, G. A. Vishnyakova, A. V. Akimov, N. N. Kolachevsky, and V. N. Sorokin, Kvantovaya Elektron. (Moscow) 44, (6) 515 (2014).CrossRefGoogle Scholar
  11. 11.
    T. Mukaiyama, H. Katori, T. Ido, Y. Li, and M. Kuwata-Gonokami, Phys. Rev. Lett. 90, (11) 113002 (2003).ADSCrossRefGoogle Scholar
  12. 12.
    K. Yu. Khabarova, A. A. Galyshev, S. A. Strelkin, A. S. Kostin, G. S. Belotelov, O. I. Berdasov, A. Gribov, N. N. Kolachevsky, and S. N. Slyusarev, Kvantovaya Elektron. (Moscow) 45, (2) 166 (2015).CrossRefGoogle Scholar
  13. 13.
    Y. Li, T. Ido, T. Eichler, and H. Katori, Appl. Phys. B 78 (3–4), 315 (2004).ADSCrossRefGoogle Scholar
  14. 14.
    http://www.corning.com/docs/specialtymaterials/pisheets/UleBro91106.pdfGoogle Scholar
  15. 15.
    K. Khabarova, S. Slyusarev, S. Strelkin, G. S. Belotelov, A. S. Kostin, V. G. Pal’chikov, and N. N. Kolachevsky, Kvantovaya Elektron. (Moscow) 42, (11) 1021 (2012).CrossRefGoogle Scholar
  16. 16.
    D. D. Sukachev, E. S. Kalganova, A. V. Sokolov, A. V. Savchenkov, G. A. Vishnyakova, A. A. Golovizin, A. V. Akimov, N. N. Kolachevsky, and V. N. Sorokin, Kvantovaya Elektron. (Moscow) 43, (4) 374 (2013).CrossRefGoogle Scholar
  17. 17.
    F. Riehle, Frequency Standards: Basics and Applications (Wiley, Weinheim, Germany, 2004; Fizmatlit, Moscow, 2009).Google Scholar
  18. 18.
    S. N. Slyusarev, A. S. Kostin, V. N. Baryshev, et al., Mir izmerenii 4, 26 (2012).Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2015

Authors and Affiliations

  • S. A. Strelkin
    • 1
    • 2
  • K. Yu. Khabarova
    • 1
    • 3
    • 4
    Email author
  • A. A. Galyshev
    • 1
    • 2
  • O. I. Berdasov
    • 1
    • 2
  • A. Yu. Gribov
    • 1
    • 2
  • N. N. Kolachevsky
    • 1
    • 2
    • 3
  • S. N. Slyusarev
    • 1
  1. 1.Federal State Unitary Enterprise “All-Russia Research Institute for Physicotechnical and Radio Engineering Measurements” (VNIIFTRI)MendeleevoRussia
  2. 2.National Research Nuclear University “MEPhI,”MoscowRussia
  3. 3.Lebedev Physical InstituteRussian Academy of SciencesMoscowRussia
  4. 4.Russian Quantum CenterSkolkovoRussia

Personalised recommendations