Journal of Experimental and Theoretical Physics

, Volume 120, Issue 6, pp 1024–1033 | Cite as

Spin-triplet electron transport in hybrid superconductor heterostructures with a composite ferromagnetic interlayer

  • A. E. Sheyerman
  • K. Y. Constantinian
  • G. A. Ovsyannikov
  • Yu. V. Kislinskii
  • A. V. Shadrin
  • A. V. Kalabukhov
  • Yu. N. Khaydukov
Order, Disorder, and Phase Transition in Condensed System

Abstract

Hybrid YBa2Cu3O7 − x/SrRuO3/La0.7Sr0.3MnO3/Au-Nb superconductor mesastructures with a composite manganite-ruthenate ferromagnetic interlayer are studied using electrophysical, magnetic, and microwave methods. The supercurrent in the mesastructure is observed when the interlayer thickness is much larger than the coherence length of ferromagnetic materials. The peak on the dependence of the critical current density on the interlayer material thickness corresponds to the coherence length, which is in qualitative agreement with theoretical predictions for a system with spit-triplet superconducting correlations. The magnetic-field dependence of the critical current is determined by penetration of magnetic flux quanta and by the magnetic domain structure, as well as by the field dependence of disorientation of the magnetization vectors of the layers in the composite magnetic interlayer. It is found that the supercurrent exists in magnetic fields two orders of magnitude stronger than the field corresponding to entry of a magnetic flux quantum into the mesastructure. The current-phase relation (CPR) of the supercurrent of mesastructures is investigated upon a change in the magnetic field from zero to 30 Oe; the ratio of the second CPR harmonic to the first, determined from the dependence of the Shapiro steps on the microwave radiation amplitude, does not exceed 50%.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. S. Bergeret, A. F. Volkov, and K. B. Efetov, Phys. Rev. Lett. 86, 4096 (2001).ADSCrossRefGoogle Scholar
  2. 2.
    A. Kadigrobov, R. I. Shekhter, and M. Jonson, Europhys. Lett. 54, 394 (2001).ADSCrossRefGoogle Scholar
  3. 3.
    J. W. A. Robinson, J. D. S. Witt, and M. G. Blamire, Science (Washington) 329, 59 (2010).ADSCrossRefGoogle Scholar
  4. 4.
    M. S. Anwar, F. Czeschka, M. Hesselberth, M. Porcu, and J. Aarts, Phys. Rev. B: Condens. Matter 82, 100501 (2010).ADSCrossRefGoogle Scholar
  5. 5.
    J. Wang, M. Singh, M. Tian, N. Kumar, B. Liu, C. Shi, J. K. Jain, N. Samarth, T. E. Mallouk, and M. H. W. Chan, Nat. Phys. 6, 389 (2010).CrossRefMATHGoogle Scholar
  6. 6.
    M. Houzet and A. I. Buzdin, Phys. Rev. B: Condens. Matter 76, 060504 (2007).ADSCrossRefGoogle Scholar
  7. 7.
    A. F. Volkov and K. B. Efetov, Phys. Rev. B: Condens. Matter 81, 144522 (2010).ADSCrossRefGoogle Scholar
  8. 8.
    M. A. Khasawneh, T. S. Khaire, C. Klose, W. P. Pratt, Jr., and N. O. Birge, Supercond. Sci. Technol. 24, 024005 (2011).ADSCrossRefGoogle Scholar
  9. 9.
    C. Klose, T. S. Khaire, Y. Wang, W. P. Pratt, Jr., N. O. Birge, B. J. McMorran, T. P. Ginley, J. A. Borchers, B. J. Kirby, B. B. Maranville, and J. Unguris, Phys. Rev. Lett. 108, 127002 (2012).ADSCrossRefGoogle Scholar
  10. 10.
    P. V. Leksin, N. N. Garif’yanov, I. A. Garifullin, Ya. V. Fominov, J. Schumann, Y. Krupskaya, V. Kataev, O. G. Schmidt, and B. Büchner, Phys. Rev. Lett. 109, 057005 (2012).ADSCrossRefGoogle Scholar
  11. 11.
    V. I. Zdravkov, J. Kehrle, G. Obermeier, D. Lenk, H.-A. Krug von Nidda, C. Müller, M. Yu. Kupriyanov, A. S. Sidorenko, S. Horn, R. Tidecks, and L. R. Tagirov, Phys. Rev. B: Condens. Matter 87, 144507 (2013).ADSCrossRefGoogle Scholar
  12. 12.
    L. Trifunovic, Z. Popović, and Z. Radović, Phys. Rev. B: Condens. Matter 84, 064511 (2011).ADSCrossRefGoogle Scholar
  13. 13.
    C. Richard, M. Houzet, and J. S. Meyer, Phys. Rev. Lett. 110, 217004 (2013).ADSCrossRefGoogle Scholar
  14. 14.
    B. Sperstad, J. Linder, and A. Sudbo, Phys. Rev. B: Condens. Matter 78, 104509 (2008).ADSCrossRefGoogle Scholar
  15. 15.
    L. Trifunovic, Phys. Rev. Lett. 107, 047001 (2011).ADSCrossRefGoogle Scholar
  16. 16.
    M. Knežević, L. Trifunovic, and Z. Radović, Phys. Rev. B: Condens. Matter 85, 094517 (2012).ADSCrossRefGoogle Scholar
  17. 17.
    A. Pal, Z. H. Barber, J. W. A. Robinson, and M. G. Blamire, Nat. Commun. 5, 3340 (2014).ADSGoogle Scholar
  18. 18.
    G. A. Ovsyannikov, A. E. Sheierman, A. V. Shadrin, Yu. V. Kislinskii, K. Y. Constantinian, and A. Kalabukhov, JETP Lett. 97(3), 145 (2013).ADSCrossRefGoogle Scholar
  19. 19.
    Yu. N. Khaydukov, G. A. Ovsyannikov, A. E. Sheyerman, K. Y. Constantinian, L. Mustafa, T. Keller, M. A. Uribe-Laverde, Yu. V. Kislinskii, A. V. Shadrin, A. Kalabukhov, B. Keimer, and D. Winkler, Phys. Rev. B: Condens. Matter 90, 035130 (2014).ADSCrossRefGoogle Scholar
  20. 20.
    S. Yunoki, A. Moreo, E. Dagotto, S. Okamoto, and S. S. Kancharla, Phys. Rev. B: Condens. Matter 76, 064532 (2007).ADSCrossRefGoogle Scholar
  21. 21.
    C. Visani, Z. Sefrioui, J. Tornos, C. Leon, J. Briatico, M. Bibes, A. Barthélémy, J. Santamaría, and J. E. Villegas, Nat. Phys. 8, 539 (2012).CrossRefGoogle Scholar
  22. 22.
    T. Hu, H. Xiao, C. Visani, Z. Sefrioui, J. Santamaria, and C. C. Almasan, Phys. Rev. B: Condens. Matter 80, 060506R (2009).ADSCrossRefGoogle Scholar
  23. 23.
    Y. Kalcheim, T. Kirzhner, G. Koren, and O. Millo, Phys. Rev. B: Condens. Matter 83, 064510 (2011).ADSCrossRefGoogle Scholar
  24. 24.
    T. Golod, A. Rydh, V. M. Krasnov, I. Marozau, M. A. Uribe-Laverde, D. K. Satapathy, Th. Wagner, and C. Bernhard, Phys. Rev. B: Condens. Matter 87, 134520 (2013).ADSCrossRefGoogle Scholar
  25. 25.
    M. van Zalk, A. Brinkman, J. Aarts, and H. Hilgenkamp, Phys. Rev. B: Condens. Matter 82, 134513 (2010).ADSCrossRefGoogle Scholar
  26. 26.
    A. M. Petrzhik, G. A. Ovsyannikov, A. V. Shadrin, K. I. Konstantinyan, A. V. Zaitsev, V. V. Demidov, and Yu. V. Kislinskii, J. Exp. Theor. Phys. 112(6), 1042 (2011).ADSCrossRefGoogle Scholar
  27. 27.
    B. F. Woodfield, M. L. Wilson, and J. M. Byers, Phys. Rev. Lett. 78, 3201 (1997).ADSCrossRefGoogle Scholar
  28. 28.
    I. Asulin, O. Yuli, G. Koren, and O. Millo, Phys. Rev. B: Condens. Matter 79, 174524 (2009).ADSCrossRefGoogle Scholar
  29. 29.
    P. Komissinskiy, G. A. Ovsyannikov, K. Y. Constantinian, Y. V. Kislinski, I. V. Borisenko, I. I. Soloviev, V. K. Kornev, E. Goldobin, and D. Winkler, Phys. Rev. B: Condens. Matter 78, 024501 (2008).ADSCrossRefGoogle Scholar
  30. 30.
    L. Mieville, D. Worledge, T. H. Geballe, R. Contreras, and K. Char, Appl. Phys. Lett. 73, 1736 (1998).ADSCrossRefGoogle Scholar
  31. 31.
    A. Y. Borisevich, A. R. Lupini, J. He, E. A. Eliseev, A. N. Morozovska, G. S. Svechnikov, P. Yu, Y.-H. Chu, R. Ramesh, S. T. Pantelides, S. V. Kalinin, and S. J. Pennycook, Phys. Rev. B: Condens. Matter 86, 140102(R) (2012).ADSCrossRefGoogle Scholar
  32. 32.
    M. Ziese, I. Vrejoiu, E. Pippel, P. Esquinazi, D. Hesse, C. Etz, J. Henk, A. Ernst, I. V. Maznichenko, W. Hergert, and I. Mertig, Phys. Rev. Lett. 104, 167203 (2010).ADSCrossRefGoogle Scholar
  33. 33.
    M. Ziese, F. Bern, A. Setzer, E. Pippel, D. H. Hesse, and I. Vrejoiu, Eur. Phys. J. B 86, 42100 (2013).CrossRefGoogle Scholar
  34. 34.
    F. V. Komissinskii, G. A. Ovsyannikov, and Z. G. Ivanov, Phys. Solid State 43(5), 801 (2001).ADSCrossRefGoogle Scholar
  35. 35.
    J. L. Cohn, J. J. Neumeier, C. P. Popoviciu, K. J. McClellan, and Th. Leventouri, Phys. Rev. B: Condens. Matter 56, R8495 (1997).ADSCrossRefGoogle Scholar
  36. 36.
    P. Kostic, Y. Okada, N. C. Collins, Z. Schlesinger, J. W. Reiner, L. Klein, A. Kapitulnik, T. H. Geballe, and M. R. Beasley, Phys. Rev. Lett. 81, 2498 (1998).ADSCrossRefGoogle Scholar
  37. 37.
    Yu. V. Kislinskii, K. Y. Konstantinian, G. A. Ovsyannikov, F. V. Komissinsky, I. V. Borisenko, and A. V. Shadrin, J. Exp. Theor. Phys. 106(4), 800 (2008).ADSCrossRefGoogle Scholar
  38. 38.
    V. V. Bol’ginov, V. S. Stolyarov, D. S. Sobanin, A. L. Karpovich, and V. V. Ryazanov, JETP Lett. 95(7), 366 (2012).ADSCrossRefGoogle Scholar
  39. 39.
    A. Barone and G. Paterno, Physics and Applications of the Josephson Effect (Wiley, New York, 1982; Mir, Moscow, 1984).CrossRefGoogle Scholar
  40. 40.
    G. Wild, C. Probst, A. Marx, and R. Gross, Eur. Phys. J. B 78, 509 (2010).ADSCrossRefGoogle Scholar
  41. 41.
    A. F. Volkov and K. B. Efetov, Phys. Rev. Lett. 102, 077002 (2009).ADSCrossRefMATHGoogle Scholar
  42. 42.
    Ya. V. Fominov, A. F. Volkov, and K. B. Efetov, Phys. Rev. B: Condens. Matter 75, 104509 (2007).ADSCrossRefGoogle Scholar
  43. 43.
    A. I. Buzdin, A. S. Mel’nikov, and N. G. Pugach, Phys. Rev. B: Condens. Matter 83, 144515 (2011).ADSCrossRefGoogle Scholar
  44. 44.
    R. Desfeux, S. Bailleul, A. Da Costa, W. Prellier, and A. M. Haghiri-Gosnet, Appl. Phys. Lett. 78, 3681 (2001).ADSCrossRefGoogle Scholar
  45. 45.
    J. Dho, Y. N. Kim, Y. S. Hwang, J. C. Kim, and N. H. Hur, Appl. Phys. Lett. 82, 1434 (2003).ADSCrossRefGoogle Scholar
  46. 46.
    M. S. Anwar, F. Czeschka, M. Hesselberth, M. Porcu, and J. Aarts, Phys. Rev. B: Condens. Matter 82, 100501 (2010).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2015

Authors and Affiliations

  • A. E. Sheyerman
    • 1
    • 2
  • K. Y. Constantinian
    • 1
  • G. A. Ovsyannikov
    • 1
    • 3
  • Yu. V. Kislinskii
    • 1
  • A. V. Shadrin
    • 1
    • 2
  • A. V. Kalabukhov
    • 3
  • Yu. N. Khaydukov
    • 4
  1. 1.Kotelnikov Institute of Radio Engineering and ElectronicsRussian Academy of SciencesMoscowRussia
  2. 2.Moscow Institute of Physics and TechnologyDolgoprudny, Moscow oblastRussia
  3. 3.Chalmers University of TechnologyGothenburgSweden
  4. 4.Max-Planck Institute for Solid State ResearchStuttgartGermany

Personalised recommendations