A novel approach to the study of conformality in the SU(3) theory with multiple flavors

  • R. Brower
  • A. Hasenfratz
  • C. Rebbi
  • E. Weinberg
  • O. Witzel
Article

Abstract

We investigate the transition between spontaneous chiral symmetry breaking and conformal behavior in the SU(3) theory with multiple fermion flavors. We propose a new strategy for studying this transition. Instead of changing the number of flavors, we lift the mass of a subset of the fermions, keeping the rest of the fermions near the massless chiral limit in order to probe the transition.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Aad et al. [ATLAS Collab.], Phys. Lett. B 716, 1 (2012). arXiv:1207.7214 [hep-ex].CrossRefADSGoogle Scholar
  2. 2.
    S. Chatrchyan et al. [CMS Collab.], Phys. Lett. B 716, 30 (2012). arXiv:1207.7235 [hep-ex].CrossRefADSGoogle Scholar
  3. 3.
    S. Weinberg, Phys. Rev. D: Part., Fields 19, 1277 (1979).CrossRefADSGoogle Scholar
  4. 4.
    L. Susskind, Phys. Rev. D: Part., Fields 20, 2619 (1979).CrossRefADSGoogle Scholar
  5. 5.
    S. Dimopoulos and L. Susskind, Nucl. Phys. B 155, 237 (1979).CrossRefADSGoogle Scholar
  6. 6.
    E. Eichten and K. D. Lane, Phys. Lett. B 90, 125 (1980).CrossRefADSGoogle Scholar
  7. 7.
    K. Yamawaki, M. Bando, and K.-I. Matumoto, Phys. Rev. Lett. 56, 1335 (1986).CrossRefADSGoogle Scholar
  8. 8.
    T. Appelquist, J. Terning, and L. C. R. Wijewardhana, Phys. Rev. D: Part., Fields 44, 871 (1991).CrossRefADSGoogle Scholar
  9. 9.
    T. Appelquist, G. Fleming, M. Lin, and D. Schaich, Phys. Rev. D: Part., Fields, Gravitation, Cosmol. 84, 054501 (2011). arXiv:1106.2148 [hep-lat].CrossRefGoogle Scholar
  10. 10.
    A. Hasenfratz, Phys. Rev. Lett. 108, 061601 (2012). arXiv:1106.5293 [hep-lat].CrossRefADSGoogle Scholar
  11. 11.
    Y. Aoki, T. Aoyama, M. Kurachi, T. Maskawa, K.-I. Nagai, H. Ohki, A. Shibata, K. Yamawaki, and T. Yamazaki, Phys. Rev. D: Part., Fields, Gravitation, Cosmol. 86, 054506 (2012). arXiv:1207.3060 [hep-lat].CrossRefGoogle Scholar
  12. 12.
    T. DeGrand, Phys. Rev. D: Part., Fields, Gravitation, Cosmol. 84, 116901 (2011). arXiv:1109.1237 [hep-lat].CrossRefGoogle Scholar
  13. 13.
    A. Cheng, A. Hasenfratz, Y. Liu, G. Petropoulos, and D. Schaich, Phys. Rev. D: Part., Fields, Gravitation, Cosmol. 90, 014509 (2014). arXiv:1401.0195 [hep-lat].CrossRefGoogle Scholar
  14. 14.
    A. Cheng, A. Hasenfratz, Y. Liu, G. Petropoulos, and D. Schaich, J. High Energy Phys. 1405, 137 (2014). arXiv:1404.0984 [hep-lat].CrossRefADSGoogle Scholar
  15. 15.
    M. Lombardo, K. Miura, T. J. N. da Silva, and E. Pallante, arXiv:1410.0298 [hep-lat].Google Scholar
  16. 16.
    Y. Aoki, T. Aoyama, M. Kurachi, T. Maskawa, K.-I. Nagai, H. Ohki, E. Rinaldi, A. Shibata, K. Yamawaki, and T. Yamazaki, Phys. Rev. Lett. 111, 162001 (2013). arXiv:1305.6006 [hep-lat].CrossRefADSGoogle Scholar
  17. 17.
    Y. Aoki, T. Aoyama, M. Kurachi, T. Maskawa, K. Miura, K. Nagai, H. Ohki, E. Rinaldi, A. Shibata, K. Yamawaki, and T. Yamazaki, in Proceedings of the 31st International Symposium on Lattice Field Theory (LATTICE 2013), Mainz, Germany, July 29–August 3, 2013 (Mainz, 2013), p. 070. arXiv:1309.0711 [hep-lat].Google Scholar
  18. 18.
    Z. Fodor, K. Holland, J. Kuti, D. Nogradi, and C. H. Wong, in Proceedings of the 31st International Symposium on Lattice Field Theory (LATTICE 2013), Mainz, Germany, July 29–August 3, 2013 (Mainz, 2013), p. 062. arXiv:1401.2176 [hep-lat].Google Scholar
  19. 19.
    A. Cheng, A. Hasenfratz, G. Petropoulos, and D. Schaich, J. High Energy Phys. 1307, 061 (2013). arXiv:1301.1355 [hep-lat].CrossRefADSGoogle Scholar
  20. 20.
    A. Cheng, A. Hasenfratz, G. Petropoulos, and D. Schaich, in Proceedings of the 31st International Symposium on Lattice Field Theory (LATTICE 2013), Mainz, Germany, July 29–August 3, 2013 (Mainz, 2013), p. 088. arXiv:1311.1287 [hep-lat].Google Scholar
  21. 21.
    J. Osborn et al., Framework for Unified Evolution of Lattices (FUEL).Google Scholar
  22. 22.
    R. Narayanan and H. Neuberger, J. High Energy Phys. 0603, 064 (2006). arXiv:hep-th/0601210 [hep-th].CrossRefADSMathSciNetGoogle Scholar
  23. 23.
    M. Lüscher, Commun. Math. Phys. 293, 899 (2010). arXiv:0907.5491 [hep-lat].CrossRefADSMATHGoogle Scholar
  24. 24.
    M. Lüscher, J. High Energy Phys. 1008, 071 (2010). arXiv:1006.4518 [hep-lat].CrossRefGoogle Scholar
  25. 25.
    A. Hasenfratz, in Proceedings of the 32nd International Symposium on Lattice Field Theory (LATTICE 2014), New York, United States, June 23–28, 2014 (New York, 2014).Google Scholar
  26. 26.
    R. Gupta, G. Guralnik, G. W. Kilcup, and S. R. Sharpe, Phys. Rev. D: Part., Fields 43, 2003 (1991).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2015

Authors and Affiliations

  • R. Brower
    • 1
    • 2
  • A. Hasenfratz
    • 3
  • C. Rebbi
    • 1
    • 2
  • E. Weinberg
    • 1
  • O. Witzel
    • 2
  1. 1.Department of PhysicsBoston UniversityBostonUSA
  2. 2.Center for Computational ScienceBoston UniversityBostonUSA
  3. 3.Department of PhysicsUniversity of ColoradoBoulderUSA

Personalised recommendations