Advertisement

Holographic thermalization in a quark confining background

  • D. S. Ageev
  • I. Ya. Aref’eva
Article

Abstract

We study holographic thermalization of a strongly coupled theory inspired by two colliding shock waves in a vacuum confining background. Holographic thermalization means a black hole formation, in fact, a trapped surface formation. As the vacuum confining background, we considered the well-know bottom-up AdS/QCD model that provides the Cornell potential and reproduces the QCD β-function. We perturb the vacuum background by colliding domain shock waves that are assumed to be holographically dual to heavy ions collisions. Our main physical assumption is that we can make a restriction on the time of trapped surface formation, which results in a natural limitation on the size of the domain where the trapped surface is produced. This limits the intermediate domain where the main part of the entropy is produced. In this domain, we can use an intermediate vacuum background as an approximation to the full confining background. We find that the dependence of the multiplicity on energy for the intermediate background has an asymptotic expansion whose first term depends on energy as E 1/3, which is very similar to the experimental dependence of particle multiplicities on the colliding ion energy obtained from the RHIC and LHC. However, this first term, at the energies where the approximation of the confining metric by the intermediate background works, does not saturate the exact answer, and we have to take the nonleading terms into account.

Keywords

High Energy Phys Quark Gluon Plasma Thermalization Time Trap Surface Holographic Thermalization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. M. Maldacena, Adv. Theor. Math. Phys. 2, 231 (1998). arXiv:hep-th/9711200.ADSMATHMathSciNetGoogle Scholar
  2. 2.
    S. S. Gubser, I. R. Klebanov, and A. M. Polyakov, Phys. Lett. B 428, 105 (1998). arXiv:hep-th/9802109.CrossRefADSMathSciNetGoogle Scholar
  3. 3.
    E. Witten, Adv. Theor. Math. Phys. 2, 2 (1998). arXiv:hep-th/9802150.Google Scholar
  4. 4.
    J. Casalderrey-Solana, H. Liu, D. Mateos, K. Rajagopal, and U. A. Wiedemann, arXiv:1101.0618 [hep-th].Google Scholar
  5. 5.
    J. Babington, J. Erdmenger, N. J. Evans, Z. Guralnik, and I. Kirsch, Phys. Rev. D: Part., Fields, Gravitation, Cosmol. 69, 066007 (2004). arXiv:hep-th/0306018.CrossRefMathSciNetGoogle Scholar
  6. 6.
    M. Kruczenski, D. Mateos, R. C. Myers, and D. J. Winters, J. High Energy Phys. 0405, 041 (2004). arXiv:hep-th/0311270.CrossRefADSGoogle Scholar
  7. 7.
    T. Sakai and S. Sugimoto, Prog. Theor. Phys. 113, 843 (2005). arXiv:hep-th/0412141; T. Sakai and S. Sugimoto, Prog. Theor. Phys. 114, 1083 (2006). arXiv:hepth/0507073.CrossRefADSMATHGoogle Scholar
  8. 8.
    J. Polchinski and M. J. Strassler, J. High Energy Phys. 0305, 012 (2003). arXiv:hep-th/0209211; hepth/0003136.CrossRefADSMathSciNetGoogle Scholar
  9. 9.
    A. Karch, E. Katz, D. T. Son, and M. A. Stephanov, Phys. Rev. D: Part., Fields, Gravitation, Cosmol. 74, 015005 (2006).CrossRefGoogle Scholar
  10. 10.
    O. Andreev and V. I. Zakharov, Phys. Rev. D: Part., Fields, Gravitation, Cosmol. 74, 025023 (2006). arXiv:hep-ph/0604204.CrossRefGoogle Scholar
  11. 11.
    C. D. White, Phys. Lett. B 652, 79 (2007). arXiv:hepph/0701157.CrossRefADSGoogle Scholar
  12. 12.
    U. Gursoy, E. Kiritsis, L. Mazzanti, and F. Nitti, J. High Energy Phys. 0905, 033 (2009). arXiv:0812.0792 [hep-th].CrossRefADSMathSciNetGoogle Scholar
  13. 13.
    H. J. Pirner and B. Galow, Phys. Lett. B 679, 51 (2009). arXiv:0903.2701 [hep-ph]; B. Galow, E. Megias, J. Nian, and H. J. Pirner, Nucl. Phys. B 834, 330 (2010). arXiv:0911.0627 [hep-ph].CrossRefADSGoogle Scholar
  14. 14.
    S. He, M. Huang, and Q.-S. Yan, Phys. Rev. D: Part., Fields, Gravitation, Cosmol. 83, 045034 (2011). arXiv:1004.1880 [hep-ph].CrossRefGoogle Scholar
  15. 15.
    U. Gürsoy, E. Kiritsis, L. Mazzanti, G. Michalogiorgakis, and F. Nitti, Lect. Notes Phys. 828, 79 (2011). arXiv:1006.5461 [hep-th].CrossRefADSGoogle Scholar
  16. 16.
    G. S. Bali, Phys. Rep. 343, 1 (2001). arXiv:hepph/0001312.CrossRefADSMATHGoogle Scholar
  17. 17.
    I. Ya. Aref’eva, Phys.-Usp. 57, 527 (2014).CrossRefGoogle Scholar
  18. 18.
    O. DeWolfe, S. S. Gubser, C. Rosen, and D. Teaney, Prog. Part. Nucl. Phys. 75, 86 (2014).CrossRefADSGoogle Scholar
  19. 19.
    S. S. Gubser, S. S. Pufu, and A. Yarom, Phys. Rev. D: Part., Fields, Gravitation, Cosmol. 78, 066014 (2008). arXiv:0805.1551 [hep-th].CrossRefGoogle Scholar
  20. 20.
    J. L. Albacete, Y. V. Kovchegov, and A. Taliotis, J. High Energy Phys. 0807, 100 (2008). arXiv:0805.2927 [hepth].CrossRefADSMathSciNetGoogle Scholar
  21. 21.
    L. Alvarez-Gaume, C. Gomez, A. Sabio Vera, A. Tavanfar, and M. A. Vazquez-Mozo, J. High Energy Phys. 0902, 009 (2009). arXiv:0811.3969 [hep-th].CrossRefADSGoogle Scholar
  22. 22.
    P. M. Chesler and L. G. Yaffe, Phys. Rev. Lett. 102, 211601 (2009). arXiv:0812.2053 [hep-th].CrossRefADSMathSciNetGoogle Scholar
  23. 23.
    S. Lin and E. Shuryak, Phys. Rev. D: Part., Fields, Gravitation, Cosmol. 79, 124015 (2009). arXiv:0902.1508 [hep-th].CrossRefGoogle Scholar
  24. 24.
    S. S. Gubser, S. S. Pufu, and A. Yarom, J. High Energy Phys. 0911, 050 (2009). arXiv:0902.4062 [hep-th].CrossRefADSGoogle Scholar
  25. 25.
    I. Ya. Aref’eva, A. A. Bagrov, and E. A. Guseva, J. High Energy Phys. 0912, 009 (2009). arXiv:0905.1087 [hepth]; I. Ya. Aref’eva, A. A. Bagrov, and L. V. Joukovskaya, J. High Energy Phys. 1003, 002 (2010). arXiv:0909.1294 [hep-th].CrossRefADSMathSciNetGoogle Scholar
  26. 26.
    E. Kiritsis and A. Taliotis, J. High Energy Phys. 1204, 065 (2012). arXiv:1111.1931 [hep-ph]; A. Taliotis, J. High Energy Phys. 1305, 034 (2013). arXiv:1212.0528 [hep-th].CrossRefADSGoogle Scholar
  27. 27.
    I. Ya. Aref’eva, E. O. Pozdeeva, and T. O. Pozdeeva, Theor. Math. Phys. 176, 861 (2013). arXiv:1401.1180 [hep-th].CrossRefMATHGoogle Scholar
  28. 28.
    I. Ya. Aref’eva, E. O. Pozdeeva, and T. O. Pozdeeva, Theor. Math. Phys. 180, 781 (2014).CrossRefMATHGoogle Scholar
  29. 29.
    G. Aad, B. Abbott, J. Abdallah, et al., [ATLAS Collab.], Phys. Lett. B 710, 363 (2012). arXiv:1108.6027 [hep-ex].ADSGoogle Scholar
  30. 30.
    S. Lin and E. Shuryak, Phys. Rev. D: Part., Fields, Gravitation, Cosmol. 83, 045025 (2011). arXiv:1011.1918 [hep-th].CrossRefGoogle Scholar
  31. 31.
    I. Ya. Aref’eva, A. A. Bagrov, and E. O. Pozdeeva, J. High Energy Phys. 1205, 117 (2012). arXiv:1201.6542 [hep-th].CrossRefADSGoogle Scholar
  32. 32.
    E. H. Mezoir and P. Gonzalez, Phys. Rev. Lett. 101, 232001 (2008). arXiv:0810.5651 [hep-ph]; P. Gonzalez, Phys. Rev. D: Part., Fields, Gravitation, Cosmol. 80, 054010 (2009). arXiv:0909.1204 [hep-ph].CrossRefADSGoogle Scholar
  33. 33.
    I. Ya. Aref’eva and A. A. Golubtsova, arXiv:1410.4595 [hep-th].Google Scholar
  34. 34.
    B. Craps, E. Kiritsis, C. Rosen, A. Taliotis, J. Vanhoof, and H. Zhang, J. High Energy Phys. 1402, 120 (2014). arXiv:1311.7560 [hep-th].CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2015

Authors and Affiliations

  1. 1.Steklov Mathematical InstituteRussian Academy of SciencesMoscowRussia

Personalised recommendations