Energy of interaction between carbon impurities in paramagnetic γ-iron

  • A. V. Ponomareva
  • Yu. N. Gornostyrev
  • I. A. Abrikosov
Electronic Properties of Solid


The energies of interaction between carbon impurity atoms in paramagnetic fcc iron (austenite) are calculated using electron density functional theory. Point defects in the paramagnetic matrix are described using a statistical approach that takes into account local magnetic fluctuations and atomic relaxation in the environment of impurity atoms. It is shown that, in addition to local deformations, magnetism significantly contributes to the energies of dissolution and interaction of carbon atoms. The values of the carbon-carbon interaction energy are indicative of a significant repulsion between these atoms in the first and second coordination spheres. The results of calculations are consistent with estimates obtained from experimental data on the activity of carbon impurity atoms in iron.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. V. Kurdyumov, L. M. Utevskii, and R. I. Entin, Transformations in Iron and Steel (Nauka, Moscow, 1977) [in Russian].Google Scholar
  2. 2.
    W. C. Leslie and E. Hornbogen, in Physical Metallurgy, Vol. 2, Ed. by R. W. Cahn and P. Haasen (Elsevier, Amsterdam, 1996), p. 1555.Google Scholar
  3. 3.
    W. F. Smith and J. Hashemi, Foundations of Materials Science and Engineering, 4th ed. (McGraw-Hill, Dallas, 2005).Google Scholar
  4. 4.
    D. W. Boukhvalov, Yu. N. Gornostyrev, M. I. Katsnelson, and A. I. Lichtenstein, Phys. Rev. Lett. 99, 247205 (2007).CrossRefADSGoogle Scholar
  5. 5.
    A. V. Ponomareva, Yu. N. Gornostyrev, and I. A. Abrikosov, Phys. Rev. B: Condens. Matter 90, 014439 (2014).CrossRefADSGoogle Scholar
  6. 6.
    M. S. Blanter, J. Alloys Compd. 291, 167 (1999).CrossRefGoogle Scholar
  7. 7.
    A. G. Khachaturyan, Theory of Structural Transformations in Solids (Wiley, New York, 1983).Google Scholar
  8. 8.
    N. B. Zvigintsev and B. M. Mogutnov, Fiz. Met. Metalloved. 46, 881 (1978).Google Scholar
  9. 9.
    J.-M. Genin and P. Flinn, Trans. Metal. Soc. AIME 242, 1419 (1968).Google Scholar
  10. 10.
    W. K. Choo and R. Kaplow, Acta Metall. 21, 725 (1973).CrossRefGoogle Scholar
  11. 11.
    H. K. D. H. Bhadeshia, J. Mater. Sci. 39, 3949 (2004).CrossRefADSGoogle Scholar
  12. 12.
    V. G. Gavrilyuk, Distribution of Carbon in the Steel (Naukova Dumka, Kiev, 1987) [in Russian].Google Scholar
  13. 13.
    B. I. Mogutnov, I. A. Tomilin, and L. A. Shvartsman, Thermodynamics of Iron-Carbon Alloys (Metallurgiya, Moscow, 1972) [in Russian].Google Scholar
  14. 14.
    Ya. M. Ridnyi, A. A. Mirzoev, and D. A. Mirzaev, Vestn. Yuzhno-Ural. Gos. Univ., Seriya: Mat., Mekh., Fiz. 5, 108 (2013).Google Scholar
  15. 15.
    L. I. Ivanovskii and N. I. Medvedeva, Fazovye Perekhody, Uporyadochennye Sostoyaniya Novye Mater. 10, 24 (2012).Google Scholar
  16. 16.
    D. E. Jiang and E. A. Carter, Phys. Rev. B: Condens. Matter 67, 214103 (2003).CrossRefADSGoogle Scholar
  17. 17.
    A. Georges, G. Kotliar, W. Krauth, and M. Rozenberg, Rev. Mod. Phys. 68, 13 (1996).CrossRefADSMathSciNetGoogle Scholar
  18. 18.
    J. Hubbard, Phys. Rev. B: Condens. Matter 19, 2626 (1979); J. Hubbard, Phys. Rev. B: Condens. Matter 20, 4584 (1979); J. Hubbard, Phys. Rev. B: Condens. Matter 23, 5974 (1981).CrossRefADSGoogle Scholar
  19. 19.
    H. Hasegawa, J. Phys. Soc. Jpn. 46, 1504 (1979); H. Hasegawa, J. Phys. Soc. Jpn. 49, 178 (1980).CrossRefADSGoogle Scholar
  20. 20.
    B. L. Gyorffy, A. J. Pindor, J. Staunton, G. M. Stocks, and H. Winter, J. Phys. F: Met. Phys. 15, 1337 (1985).CrossRefADSGoogle Scholar
  21. 21.
    B. Alling, T. Marten, and I. A. Abrikosov, Phys. Rev. B: Condens. Matter 82, 184430 (2010).CrossRefADSGoogle Scholar
  22. 22.
    G. Kresse and J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996); G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).CrossRefGoogle Scholar
  23. 23.
    G. Kresse and J. Joubert, Phys. Rev. B: Condens. Matter 59, 1758 (1999).CrossRefADSGoogle Scholar
  24. 24.
    P. E. Blöchl, Phys. Rev. B: Condens. Matter 50, 17953 (1994).CrossRefADSGoogle Scholar
  25. 25.
    J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).CrossRefADSGoogle Scholar
  26. 26.
    H. Hellmann, Einführung in die Quantumchemie (Deuticke, Leipzig, 1937).Google Scholar
  27. 27.
    R. P. Feynman, Phys. Rev. 56, 340 (1939).CrossRefADSMATHGoogle Scholar
  28. 28.
    M. Methfessel and A. T. Paxton, Phys. Rev. B: Condens. Matter 40, 3616 (1989).CrossRefADSGoogle Scholar
  29. 29.
    H. J. Monkhorst and J. D. Pack, Phys. Rev. B: Solid State 13, 5188 (1976).CrossRefADSMathSciNetGoogle Scholar
  30. 30.
    K. Kanematsu, S. Misawa, M. Shiga, H. Wada, and H. P. J. Wijn, Magnetic Properties of Metals: 3d, 4d, and 5d Elements, Alloys, and Compounds, Ed. by H. P. J. Wijn, in Landolt-Börnstein, New Series III/32A (Springer, Berlin, 1997), Vol. III/32A.Google Scholar
  31. 31.
    A. Filippetti, W. E. Pickett, and B. M. Klein, Phys. Rev. B: Condens. Matter 59, 7043 (1999).CrossRefADSGoogle Scholar
  32. 32.
    A. Zunger, S.-H. Wei, L. G. Ferreira, and J. E. Bernard, Phys. Rev. Lett. 65, 353 (1990).CrossRefADSGoogle Scholar
  33. 33.
    P. Steneteg, B. Alling, and I. A. Abrikosov, Phys. Rev. B: Condens. Matter 85, 144404 (2012).CrossRefADSGoogle Scholar
  34. 34.
    H.-Ch. Mertins, S. Valencia, W. Gudat, P. M. Oppeneer, O. Zaharko, and H. Grimmer, Europhys. Lett. 66, 743 (2004).CrossRefADSGoogle Scholar
  35. 35.
    M. Weser, Y. Rehder, K. Horn, M. Sicot, M. Fonin, A. B. Preobrajenski, E. N. Voloshina, E. Goering, and Yu. S. Dedkov, Appl. Phys. Lett. 96, 012504 (2010).CrossRefADSGoogle Scholar
  36. 36.
    A. V. Ruban, M. I. Katsnelson, W. Olovsson, S. I. Simak, and I. A. Abrikosov, Phys. Rev. B: Condens. Matter 71, 054402 (2005).CrossRefADSGoogle Scholar
  37. 37.
    S. V. Okatov, Yu. N. Gornostyrev, A. I. Lichtenstein, and M. I. Katsnelson, Phys. Rev. B: Condens. Matter 84, 214422 (2011).CrossRefADSGoogle Scholar
  38. 38.
    A. Ludstech, Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr. 28, 59 (1972).CrossRefADSGoogle Scholar
  39. 39.
    J. A. Lobo and G. H. Geiger, Metall. Trans. A 7, 1359 (1976).CrossRefGoogle Scholar
  40. 40.
    R. P. Smith, J. Am. Chem. Soc. 68, 1163 (1946).CrossRefGoogle Scholar
  41. 41.
    J. A. Slane, C. Wolverton, and R. Gibala, Metall. Mater. Trans. A 35, 2239 (2004).CrossRefGoogle Scholar
  42. 42.
    T. Ellis, I. M. Davidson, and C. Bodsworth, J. Iron Steel Inst. 210, 582 (1963).Google Scholar
  43. 43.
    B. Drittler, M. Weinert, R. Zeller, and P. H. Dederichs, Phys. Rev. B: Condens. Matter 39, 930 (1989).CrossRefADSGoogle Scholar
  44. 44.
    R. B. McLellan and W. W. Dunn, J. Phys. Chem. Solids 30, 2631 (1969).CrossRefADSGoogle Scholar
  45. 45.
    W. W. Dunn and R. B. McLellan, Metall. Trans. 1(5), 1263 (1970).Google Scholar
  46. 46.
    K. Oda, H. Fujimura, and H. Ino, J. Phys. Condens. Matter. 6, 679 (1994).CrossRefADSGoogle Scholar
  47. 47.
    A. G. Balanyuk, V. N. Bugaev, V. M. Nadutov, and A. L. Sozinov, Phys. Status Solidi B 207, 3 (1998).CrossRefADSGoogle Scholar
  48. 48.
    A. L. Sozinov, A. G. Balanyuk, and V. G. Gavriljuk, Acta Mater. 45, 225 (1997).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2015

Authors and Affiliations

  • A. V. Ponomareva
    • 1
  • Yu. N. Gornostyrev
    • 2
    • 3
  • I. A. Abrikosov
    • 1
    • 4
  1. 1.National University of Science and Technology ‘Moscow Institute Steel and Alloys’MoscowRussia
  2. 2.Institute of Quantum Materials ScienceYekaterinburgRussia
  3. 3.Institute of Metal PhysicsUral Branch of the Russian Academy of SciencesYekaterinburgRussia
  4. 4.Department of Physics, Chemistry, and Biology (IFM)Linköping UniversityLinköpingSweden

Personalised recommendations