Journal of Experimental and Theoretical Physics

, Volume 120, Issue 2, pp 319–326 | Cite as

Convection in a colloidal suspension in a closed horizontal cell

  • B. L. SmorodinEmail author
  • I. N. Cherepanov
Statistical, Nonlinear, and Soft Matter Physics


The experimentally detected [1] oscillatory regimes of convection in a colloidal suspension of nanoparticles with a large anomalous thermal diffusivity in a closed horizontal cell heated from below have been simulated numerically. The concentration inhomogeneity near the vertical cavity boundaries arising from the interaction of thermal-diffusion separation and convective mixing has been proven to serve as a source of oscillatory regimes (traveling waves). The dependence of the Rayleigh number at the boundary of existence of the traveling-wave regime on the aspect ratio of the closed cavity has been established. The spatial characteristics of the emerging traveling waves have been determined.


Rayleigh Number Stream Function Colloidal Suspension Critical Rayleigh Number Oscillatory Regime 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Donzelli, R. Cerbino, and A. Vailati, Phys. Rev. Lett. 102, 104503 (2009).CrossRefADSGoogle Scholar
  2. 2.
    G. F. Putin, in Proceedings of the 11th Riga Workshop on Magnetic Hydrodynamics, Riga, 1984, Vol. 3, p. 15.Google Scholar
  3. 3.
    M. I. Shliomis and M. Souhar, Europhys. Lett. 49(1), 55 (2000).CrossRefADSGoogle Scholar
  4. 4.
    M. I. Shliomis, B. L. Smorodin, and S. Kamiyama, Philos. Mag. 83(17–18), 2139 (2003).CrossRefADSGoogle Scholar
  5. 5.
    M. I. Shliomis and B. L. Smorodin, Phys. Rev. E: Stat., Nonlinear, Soft. Matter Phys. 71, 036312 (2005).CrossRefADSGoogle Scholar
  6. 6.
    B. Huke, H. Pleiner, and M. Lücke, Phys. Rev. E: Stat., Nonlinear, Soft. Matter Phys. 75, 036203 (2007).CrossRefADSGoogle Scholar
  7. 7.
    F. Winkel, S. Messlinger, W. Schöpf, I. Rehberg, M. Siebenbürger, and M. Ballauff, New J. Phys. 12, 053003 (2010).CrossRefADSGoogle Scholar
  8. 8.
    A. Ryskin and H. Pleiner, Int. J. Bifurcation Chaos 20, 225 (2010).CrossRefADSzbMATHGoogle Scholar
  9. 9.
    B. L. Smorodin, I. N. Cherepanov, B. I. Myznikova, and M. I. Shliomis, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 84, 026305 (2011).CrossRefADSGoogle Scholar
  10. 10.
    I. N. Cherepanov and B. L. Smorodin, J. Exp. Theor. Phys. 117(5), 963 (2013).CrossRefADSGoogle Scholar
  11. 11.
    J. K. Platten and J. C. Legros, Convection in Fluids (Springer-Verlag, Berlin, 1984).Google Scholar
  12. 12.
    L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 6: Fluid Mechanics (Nauka, Moscow, 1986; Butterworth-Heinemann, Oxford, 1987).Google Scholar
  13. 13.
    Yu. L. Raikher and M. I. Shliomis, J. Magn. Magn. Mater. 122, 93 (1993).CrossRefADSGoogle Scholar
  14. 14.
    P. Roache, Computational Fluid Dynamics (Hermosa, Albuquerque, New Mexico, United States, 1976; Mir, Moscow, 1980).Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2015

Authors and Affiliations

  1. 1.Perm State UniversityPermRussia

Personalised recommendations