Advertisement

Jet formation in spallation of metal film from substrate under action of femtosecond laser pulse

  • N. A. Inogamov
  • V. V. Zhakhovskii
  • V. A. Khokhlov
Atoms, Molecules, Optics

Abstract

It is well known that during ablation by an ultrashort laser pulse, the main contribution to ablation of the substance is determined not by evaporation, but by the thermomechanical spallation of the substance. For identical metals and pulse parameters, the type of spallation is determined by film thickness d f . An important gauge is metal heating depth d T at the two-temperature stage, at which electron temperature is higher than ion temperature. We compare cases with d f < d T (thin film) and d f d T (bulk target). Radius R L of the spot of heating by an optical laser is the next (after d f ) important geometrical parameter. The morphology of film bulging in cases where d f < d T on the substrate (blistering) changes upon a change in radius R L in the range from diffraction limit R L ∼ λ to high values of R L ≫ λ, where λ ∼ 1 μm is the wavelength of optical laser radiation. When d f < d T , R L ∼ λ, and F abs > F m, gold film deposited on the glass target acquires a cupola-shaped blister with a miniature frozen nanojet in the form of a tip on the circular top of the cupola (F abs and F m are the absorbed energy and the melting threshold of the film per unit surface area of the film). A new physical mechanism leading to the formation of the nanojet is proposed.

Keywords

Molecular Dynamic Molecular Dynamic Simulation Metal Film Rarefaction Wave Gold Film 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. S. Ivanov, A. I. Kuznetsov, V. P. Lipp, B. Rethfeld, B. N. Chichkov, M. E. Garcia, and W. Schulz, Appl. Phys. A: Mater. Sci. Process. 111, 675 (2013).CrossRefADSGoogle Scholar
  2. 2.
    Y. P. Meshcheryakov, M. V. Shugaev, Th. Mattle, Th. Lippert, and N. M. Bulgakova, Appl. Phys. A: Mater. Sci. Process. 113, 521 (2013).CrossRefADSGoogle Scholar
  3. 3.
    K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, D. von der Linde, A. Oparin, J. Meyer-ter-Vehn, and S. I. Anisimov, Phys. Rev. Lett. 81, 224 (1998).CrossRefADSGoogle Scholar
  4. 4.
    N. A. Inogamov, A. M. Oparin, Yu. V. Petrov, N. V. Shaposhnikov, S. I. Anisimov, D. von der Linde, and J. Meyer-ter-Vehn, JETP Lett. 69(4), 310 (1999).CrossRefADSGoogle Scholar
  5. 5.
    N. A. Inogamov, V. V. Zhakhovsky, Yu. V. Petrov, V. A. Khokhlov, S. I. Ashitkov, K. P. Migdal, D. K. Ilnitsky, Y. N. Emirov, K. V. Khishchenko, P. S. Komarov, V. V. Shepelev, M. B. Agranat, S. I. Anisimov, I. I. Oleynik, and V. E. Fortov, Proc. SPIE—Int. Soc. Opt. Eng. 9065, 906502 (2013).Google Scholar
  6. 6.
    S. I. Anisimov, B. L. Kapeliovich, and T. L. Perel’man, Sov. Phys. JETP 39(2), 375 (1974).ADSGoogle Scholar
  7. 7.
    Yu. V. Petrov, N. A. Inogamov, and K. P. Migdal, JETP Lett. 97(1), 20 (2013).CrossRefADSGoogle Scholar
  8. 8.
    Z. Lin, L. V. Zhigilei, and V. Celli, Phys. Rev. B: Condens. Matter 77, 075133 (2008).CrossRefADSGoogle Scholar
  9. 9.
    K. P. Migdal, Yu. V. Petrov, and N. A. Inogamov, Proc. SPIE—Int. Soc. Opt. Eng. 9065, 906503 (2013).Google Scholar
  10. 10.
    N. A. Inogamov, A. Ya. Faenov, V. V. Zhakhovsky, T. A. Pikuz, I. Yu. Skobelev, Yu. V. Petrov, V. A. Khokhlov, V. V. Shepelev, S. I. Anisimov, V. E. Fortov, Y. Fukuda, M. Kando, T. Kawachi, M. Nagasono, H. Ohashi, M. Yabashi, K. Tono, Y. Senda, T. Togashi, and T. Ishikawa, Contrib. Plasma Phys. 51, 419 (2011).CrossRefADSGoogle Scholar
  11. 11.
    Yu. V. Petrov and N. A. Inogamov, JETP Lett. 98(5), 278 (2013).CrossRefADSGoogle Scholar
  12. 12.
    N. A. Inogamov, S. I. Anisimov, and B. Retfel’d, J. Exp. Theor. Phys. 88(6), 1143 (1999).CrossRefADSGoogle Scholar
  13. 13.
    S. I. Anisimov, N. A. Inogamov, A. M. Oparin, B. Rethfeld, T. Yabe, M. Ogawa, and V. E. Fortov, Appl. Phys. A: Mater. Sci. Process. 69, 617 (1999).CrossRefADSGoogle Scholar
  14. 14.
    V. V. Zhakhovskii, K. Nishikhara, S. I. Anisimov, and N. A. Inogamov, JETP Lett. 71(4), 167 (2000).CrossRefADSGoogle Scholar
  15. 15.
    L. V. Zhigilei and B. J. Garrison, J. Appl. Phys. 88, 1281 (2000).CrossRefADSGoogle Scholar
  16. 16.
    S. I. Anisimov, V. V. Zhakhovskii, N. A. Inogamov, K. Nishihara, A. M. Oparin, and Yu. V. Petrov, JETP Lett. 77(11), 606 (2003).CrossRefADSGoogle Scholar
  17. 17.
    P. Lorazo, L. J. Lewis, and M. Meunier, Phys. Rev. Lett. 91, 225502 (2003).CrossRefADSGoogle Scholar
  18. 18.
    M. E. Povarnitsyn, T. E. Itina, M. Sentis, K. V. Khishchenko, and P. R. Levashov, Phys. Rev. B: Condens. Matter 75, 235414 (2007).CrossRefADSGoogle Scholar
  19. 19.
    F. Baset, K. Popov, A. Villafranca, J.-M. Guay, Z. Al-Rekabi, A. E. Pelling, L. Ramunno, and R. Bhardwaj, Opt. Express 21, 12527 (2013).CrossRefADSGoogle Scholar
  20. 20.
    B. Nagler, U. Zastrau, R. R. Fäustlin, S. M. Vinko, T. Whitcher, A. J. Nelson, R. Sobierajski, J. Krzywinski, J. Chalupsky, E. Abreu, S. Bajt, T. Bornath, T. Burian, H. Chapman, J. Cihelka, T. Döppner, S. Düsterer, T. Dzelzainis, M. Fajardo, E. Förster, C. Fortmann, E. Galtier, S. H. Glenzer, S. Göde, G. Gregori, V. Hajkova, P. Heimann, L. Juha, M. Jurek, F. Y. Khattak, A. R. Khorsand, D. Klinger, M. Kozlova, T. Laarmann, H. J. Lee, R. W. Lee, K.-H. Meiwes-Broer, P. Mercere, W. J. Murphy, A. Przystawik, R. Redmer, H. Reinholz, D. Riley, G. Röpke, F. Rosmej, K. Saksl, R. Schott, R. Thiele, J. Tiggesbäumker, S. Toleikis, T. Tschentscher, I. Uschmann, H. J. Vollmer, J. S. Wark, and B. Nagler, Nat. Phys. 5, 693 (2009).CrossRefGoogle Scholar
  21. 21.
    J. Colgan, J. Abdallah, Jr., A. Ya. Faenov, S. A. Pikuz, E. Wagenaars, N. Booth, O. Culfa, R. J. Dance, R. G. Evans, R. J. Gray, T. Kaempfer, K. L. Lancaster, P. McKenna, A. L. Rossall, I. Yu. Skobelev, K. S. Schulze, I. Uschmann, A. G. Zhidkov, and N. C. Woolsey, Phys. Rev. Lett. 110, 125001 (2013).CrossRefADSGoogle Scholar
  22. 22.
    B. L. Henke, E. M. Gullikson, and J. C. Davis, At. Data Nucl. Data Tables 54, 181 (1993).CrossRefADSGoogle Scholar
  23. 23.
    N. A. Inogamov, A. Ya. Faenov, V. V. Zhakhovskii, I. Yu. Skobelev, V. A. Khokhlov, Y. Kato, M. Tanaka, T. A. Pikuz, M. Kishimoto, M. Ishino, M. Nishikino, Y. Fukuda, S. V. Bulanov, T. Kawachi, Yu. V. Petrov, S. I. Anisimov, and V. E. Fortov, Contrib. Plasma Phys. 51, 361 (2011).CrossRefADSGoogle Scholar
  24. 24.
    M. Ishino, A. Ya. Faenov, M. Tanaka, S. Tamotsu, N. Hasegawa, M. Nishikino, T. A. Pikuz, T. Kaihori, and T. Kawachi, Appl. Phys. A: Mater. Sci. Process. 110, 179 (2013).CrossRefADSGoogle Scholar
  25. 25.
    M. Ishino, A. Ya. Faenov, M. Tanaka, S. Tamotsu, T. Pikuz, N. Hasegawa, M. Nishikino, N. Inogamov, I. Skobelev, V. Fortov, G. Norman, S. Starikov, V. Stegailov, T. Kaihori, T. Kawachi, and M. Yamagiwa, Proc. SPIE—Int. Soc. Opt. Eng. 8849, 88490F (2013). doi 10.1117/12.2022425ADSGoogle Scholar
  26. 26.
    E. N. Borodin, A. E. Mayer, and V. S. Krasnikov, Curr. Appl. Phys. 11, 1315 (2011).CrossRefADSGoogle Scholar
  27. 27.
    P. K. Patel, A. J. Mackinnon, M. H. Key, T. E. Cowan, M. E. Foord, M. Allen, D. F. Price, H. Ruhl, P. T. Springer, and R. Stephens, Phys. Rev. Lett. 91, 125004 (2003).CrossRefADSGoogle Scholar
  28. 28.
    C. Unger, J. Koch, L. Overmeyer, and B. N. Chichkov, Opt. Express 20, 24864 (2012).CrossRefADSGoogle Scholar
  29. 29.
    Y. Nakata, T. Okada, and M. Maeda, Jpn. J. Appl. Phys. 42, L1452 (2003).CrossRefADSGoogle Scholar
  30. 30.
    F. Korte, J. Koch, and B. N. Chichkov, Appl. Phys. A: Mater. Sci. Process. 79, 879 (2004).CrossRefADSGoogle Scholar
  31. 31.
    Y. Nakata, N. Miyanaga, and T. Okada, Appl. Surf. Sci. 253, 6555 (2007).CrossRefADSGoogle Scholar
  32. 32.
    A. I. Kuznetsov, J. Koch, and B. N. Chichkov, Appl. Phys. A: Mater. Sci. Process. 94, 221 (2009).CrossRefADSGoogle Scholar
  33. 33.
    V. I. Emel’yanov, D. A. Zayarniy, A. A. Ionin, I. V. Kiseleva, S. I. Kudryashov, S. V. Makarov, T. H. T. Nguyen, and A. A. Rudenko, JETP Lett. 99(9), 518 (2014).CrossRefADSGoogle Scholar
  34. 34.
    N. A. Inogamov, V. V. Zhakhovskii, S. I. Ashitkov, V. A. Khokhlov, Yu. V. Petrov, P. S. Komarov, M. B. Agranat, S. I. Anisimov, and K. Nishihara, Appl. Surf. Sci. 255, 9712 (2009); N. A. Inogamov, V. V. Zhakhovskii, S. I. Ashitkov, V. A. Khokhlov, Yu. V. Petrov, P. S. Komarov, M. B. Agranat, S. I. Anisimov, and K. Nishihara, Appl. Surf. Sci. 255, 9712 (2009); arXiv:0812.2965.CrossRefADSGoogle Scholar
  35. 35.
    N. A. Inogamov, Yu. V. Petrov, V. V. Zhakhovsky, V. A. Khokhlov, B. J. Demaske, S. I. Ashitkov, K. V. Khishchenko, K. P. Migdal, M. B. Agranat, S. I. Anisimov, V. E. Fortov, and I. I. Oleynik, AIP Conf. Proc. 1464, 593 (2012).CrossRefADSGoogle Scholar
  36. 36.
    A. V. Bushman, I. V. Lomonosov, and V. E. Fortov, Equations of State of Metals at High Energy Densities (Institute of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Moscow oblast, 1992) [in Russian].Google Scholar
  37. 37.
    A. V. Bushman, G. I. Kanel’, A. L. Ni, and V. E. Fortov, Intense Dynamic Loading of Condensed Matter (Taylor and Francis, New York, 1993).Google Scholar
  38. 38.
    D. M. Medvedev and Yu. V. Petrov, J. Exp. Theor. Phys. 88(1), 128 (1999).CrossRefADSGoogle Scholar
  39. 39.
    V. Recoules, J. Clerouin, G. Zerah, P. M. Anglade, and S. Mazevet, Phys. Rev. Lett. 96, 055503 (2006).CrossRefADSGoogle Scholar
  40. 40.
    M. B. Agranat, N. E. Andreev, S. I. Ashitkov, M. E. Veisman, P. R. Levashov, A. V. Ovchinnikov, D. S. Sitnikov, V. E. Fortov, and K. V. Khishchenko, JETP Lett. 85(6), 271 (2007).CrossRefADSGoogle Scholar
  41. 41.
    M. E. Veysman, M. B. Agranat, N. E. Andreev, S. I. Ashitkov, V. E. Fortov, K. V. Khishchenko, O. F. Kostenko, P. R. Levashov, A. V. Ovchinnikov, and D. S. Sitnikov, J. Phys. B: At., Mol. Opt. Phys. 41, 125704 (2008).CrossRefADSGoogle Scholar
  42. 42.
    S. Khakshouri, D. Alfe, and D. M. Duffy, Phys. Rev. B: Condens. Matter 78, 224304 (2008).CrossRefADSGoogle Scholar
  43. 43.
    P. R. Levashov, G. V. Sin’ko, N. A. Smirnov, D. V. Minakov, O. P. Shemyakin, and K. V. Khishchenko, J. Phys.: Condens. Matter. 22, 505501 (2010).Google Scholar
  44. 44.
    E. G. Gamaly, Phys. Rep. 508, 91 (2011).CrossRefADSGoogle Scholar
  45. 45.
    P. A. Loboda, N. A. Smirnov, A. A. Shadrin, and N. G. Karlykhanov, High Energy Density Phys. 7, 361 (2011).CrossRefADSGoogle Scholar
  46. 46.
    S. V. Starikov, V. V. Stegailov, G. E. Norman, V. E. Fortov, M. Ishino, M. Tanaka, N. Hasegawa, M. Nishikino, T. Ohba, T. Kaihori, E. Ochi, T. Imazono, T. Kavachi, S. Tamotsu, T. A. Pikuz, I. Yu. Skobelev, and A. Ya. Faenov, JETP Lett. 93(11), 642 (2011).CrossRefADSGoogle Scholar
  47. 47.
    S. G. Bezhanov, A. P. Kanavin, and S. A. Uryupin, Kvantovaya Elektron. (Moscow) 41, 447 (2011).CrossRefGoogle Scholar
  48. 48.
    G. E. Norman, S. V. Starikov, and V. V. Stegailov, J. Exp. Theor. Phys. 114(5), 792 (2012).CrossRefADSGoogle Scholar
  49. 49.
    G. Norman, S. Starikov, V. Stegailov, V. Fortov, I. Skobelev, T. Pikuz, A. Faenov, S. Tamotsu, Y. Kato, M. Ishino, M. Tanaka, N. Hasegawa, M. Nishikino, T. Ohba, T. Kaihori, Y. Ochi, T. Imazono, Y. Fukuda, M. Kando, and T. Kawachi, J. Appl. Phys. 112, 013104 (2012).CrossRefADSGoogle Scholar
  50. 50.
    G. V. Sin’ko, N. A. Smirnov, A. A. Ovechkin, P. R. Levashov, and K. V. Khishchenko, High Energy Density Phys. 9, 309 (2013).CrossRefADSGoogle Scholar
  51. 51.
    G. E. Norman, S. V. Starikov, V. V. Stegailov, I. M. Saitov, and P. A. Zhilyaev, Contrib. Plasma Phys. 53, 129 (2013).CrossRefADSGoogle Scholar
  52. 52.
    Ya. B. Zel’dovich and Yu. P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (Nauka, Moscow, 1966; Dover, New York, 2002).Google Scholar
  53. 53.
  54. 54.
    K. V. Khishchenko, Tech. Phys. Lett. 30(10), 829 (2004).CrossRefADSGoogle Scholar
  55. 55.
    N. A. Inogamov, V. V. Zhakhovsky, V. A. Khokhlov, S. I. Ashitkov, Y. N. Emirov, K. V. Khichshenko, A. Ya. Faenov, T. A. Pikuz, M. Ishino, M. Kando, N. Hasegawa, M. Nishikino, P. S. Komarov, B. J. Demaske, M. B. Agranat, S. I. Anisimov, T. Kawachi, and I. I. Oleynik, J. Phys.: Conf. Ser. 510, 012041 (2014).ADSGoogle Scholar
  56. 56.
    N. A. Inogamov, V. V. Zhakhovsky, V. A. Khokhlov, B. J. Demaske, K. V. Khishchenko, and I. I. Oleynik, J. Phys.: Conf. Ser. 500, 192023 (2014).ADSGoogle Scholar
  57. 57.
    V. V. Stegailov, Contrib. Plasma Phys. 50, 31 (2010).CrossRefADSGoogle Scholar
  58. 58.
    D. Fisher, M. Fraenkel, Z. Henis, E. Moshe, and S. Eliezer, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 65, 016409 (2001).CrossRefGoogle Scholar
  59. 59.
    Handbook of Physical Quantities, Ed. by I. S. Grigoriev and E. Z. Meilikhov (Energoatomizdat, Moscow, 1991; CRC Press, Boca Raton, Florida, United States, 1997).Google Scholar
  60. 60.
    W. Ebeling, A. Foerster, V. Fortov, V. K. Gryaznov, and A. Ya. Polishchuk, Thermophysical Properties of Hot Dense Plasmas (Teubner, Stuttgart, Germany, 1991).Google Scholar
  61. 61.
    A. Yu. Kuksin, G. E. Norman, V. V. Stegailov, and A. V. Yanilkin, Comput. Phys. Commun. 177, 34 (2007).CrossRefADSGoogle Scholar
  62. 62.
    D. K. Ilnitsky, V. A. Khokhlov, N. A. Inogamov, V. V. Zhakhovsky, Y. V. Petrov, K. V. Khishchenko, K. P. Migdal, and S. I. Anisimov, J. Phys.: Conf. Ser. 500, 032021 (2014).ADSGoogle Scholar
  63. 63.
    A. K. Upadhyay, N. A. Inogamov, B. Rethfeld, and H. M. Urbassek, Phys. Rev. B: Condens. Matter 78, 045437 (2008).CrossRefADSGoogle Scholar
  64. 64.
    Ya. Cherednikov, N. A. Inogamov, and H. M. Urbassek, J. Opt. Soc. Am. B 28, 1817 (2011).CrossRefGoogle Scholar
  65. 65.
    B. J. Demaske, V. V. Zhakhovsky, N. A. Inogamov, and I. I. Oleynik, Phys. Rev. B: Condens. Matter 82, 064113 (2010).CrossRefADSGoogle Scholar
  66. 66.
    B. Chimier and V. T. Tikhonchuk, Phys. Rev. B: Condens. Matter 79, 184107 (2009).CrossRefADSGoogle Scholar
  67. 67.
    L. V. Zhigilei, Zh. Lin, and D. S. Ivanov, J. Phys. Chem. C 113, 11892 (2009).CrossRefGoogle Scholar
  68. 68.
    M. E. Povarnitsyn, T. E. Itina, K. V. Khishchenko, and P. R. Levashov, Appl. Surf. Sci. 253, 6343 (2007).CrossRefADSGoogle Scholar
  69. 69.
    A. N. Volkov and L. V. Zhigilei, J. Phys.: Conf. Ser. 59, 640 (2007).ADSGoogle Scholar
  70. 70.
    V. V. Zhakhovskii, N. A. Inogamov, Yu. V. Petrov, S. I. Ashitkov, and K. Nishihara, Appl. Surf. Sci. 255, 9592 (2009).CrossRefADSGoogle Scholar
  71. 71.
    N. A. Inogamov, A. Ya. Faenov, V. A. Khokhlov, V. V. Zhakhovskii, Yu. V. Petrov, I. Yu. Skobelev, K. Nishihara, Y. Kato, M. Tanaka, T. A. Pikuz, M. Kishimoto, M. Ishino, M. Nishikino, Y. Fukuda, S. V. Bulanov, T. Kawachi, S. I. Anisimov, and V. E. Fortov, Contrib. Plasma Phys. 49, 455 (2009).CrossRefGoogle Scholar
  72. 72.
    N. A. Inogamov and V. V. Zhakhovskii, JETP Lett. 100(1), 4 (2014).CrossRefADSGoogle Scholar
  73. 73.
    F. Aqra and A. Ayyad, Mater. Lett. 65, 2124 (2011).CrossRefGoogle Scholar
  74. 74.
    E. B. Webb III and G. S. Grest, Phys. Rev. Lett. 86, 2066 (2001).CrossRefADSGoogle Scholar
  75. 75.
    V. K. Semenchenko, Surface Phenomena in Metals and Alloys (Pergamon, New York, 1961).Google Scholar
  76. 76.
    V. V. Zhakhovskii, N. A. Inogamov, and K. Nishihara, JETP Lett. 87(8), 423 (2008).CrossRefADSGoogle Scholar
  77. 77.
    V. Zhakhovskii, N. Inogamov, and K. Nishihara, J. Phys.: Conf. Ser. 112, 042080 (2008).ADSGoogle Scholar
  78. 78.
    S. I. Ashitkov, N. A. Inogamov, V. V. Zhakhovskii, Yu. N. Emirov, M. B. Agranat, I. I. Oleinik, S. I. Anisimov, and V. E. Fortov, JETP Lett. 95(4), 176 (2012).CrossRefADSGoogle Scholar
  79. 79.
    E. V. Golosov, A. A. Ionin, Yu. R. Kolobov, S. I. Kudryashov, A. E. Ligachev, Yu. N. Novoselov, L. V. Seleznev, and D. V. Sinitsyn, J. Exp. Theor. Phys. 113(1), 14 (2011).CrossRefADSGoogle Scholar
  80. 80.
    J. Reif, Springer Ser. Mater. Sci. 130, 19 (2010).CrossRefGoogle Scholar
  81. 81.
    A. Ya. Vorobyev and Chunlei Guo, Opt. Express 14, 2164 (2006).CrossRefADSGoogle Scholar
  82. 82.
    G. Birkhoff and E. H. Zarantonello, Jets, Wakes, and Cavities (Academic, New York, 1957).MATHGoogle Scholar
  83. 83.
    M. A. Lavrent’ev and B. V. Shabat, Problems of Hydrodynamics and Their Mathematical Models (Nauka, Moscow, 1973) [in Russian].Google Scholar
  84. 84.
    N. A. Inogamov, V. V. Zhakhovsky, S. I. Ashitkov, Y. N. Emirov, A. Y. Faenov, T. A. Pikuz, M. Ishino, M. Kando, N. Hasegawa, M. Nishikino, T. Kawachi, M. B. Agranat, A. V. Andriash, S. E. Kuratov, and I. I. Oleynik, J. Phys.: Conf. Ser. 500, 112070 (2014).ADSGoogle Scholar
  85. 85.
    N. A. Inogamov, V. V. Zhakhovskii, S. I. Ashitkov, Yu. V. Petrov, M. B. Agranat, S. I. Anisimov, K. Nishihara, and V. E. Fortov, J. Exp. Theor. Phys. 107(1), 1 (2008).CrossRefADSGoogle Scholar
  86. 86.
    Y. P. Meshcheryakov and N. M. Bulgakova, Appl. Phys. A: Mater. Sci. Process. 82, 363 (2006).CrossRefADSGoogle Scholar
  87. 87.
    D. S. Ivanov, B. Rethfeld, G. M. O’Connor, T. J. Glynn, A. N. Volkov and L. V. Zhigilei, Appl. Phys. A: Mater. Sci. Process. 92, 791 (2008).CrossRefADSGoogle Scholar
  88. 88.
    D. S. Ivanov, Zh. Lin, B. Rethfeld, G. M. O’Connor, T. J. Glynn, and L. V. Zhigilei, J. Appl. Phys. 107, 013519 (2010).CrossRefADSGoogle Scholar
  89. 89.
    A. A. Ionin, S. I. Kudryashov, L. V. Seleznev, D. V. Sinitsyn, A. F. Bunkin, V. N. Lednev, and S. M. Pershin, J. Exp. Theor. Phys. 116(3), 347 (2013).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2015

Authors and Affiliations

  • N. A. Inogamov
    • 1
  • V. V. Zhakhovskii
    • 2
  • V. A. Khokhlov
    • 1
  1. 1.Landau Institute for Theoretical PhysicsRussian Academy of SciencesChernogolovka, Moscow oblastRussia
  2. 2.Dukhov All-Russia Research Institute of AutomaticsRosatom, MoscowRussia

Personalised recommendations