Advertisement

Ideal hydrodynamics outside and inside a black hole: Hamiltonian description in Painlevé-Gullstrand coordinates

  • V. P. Ruban
Nuclei, Particles, Fields, Gravitation, and Astrophysics

Abstract

We show that when the Painlevé-Gullstrand coordinates are used in their Cartesian version, the Hamiltonian of relativistic ideal hydrodynamics in the vicinity of a nonrotating black hole differs by only one simple term from the corresponding Hamiltonian in a flat spacetime. The interior region of the black hole is also described in a unified way, because there is no singularity on the event horizon in Painlevé-Gullstrand coordinates. We present the exact solution describing the steady accretion of extremely hard matter (ɛ ∝ n 2) onto a moving black hole up to the central singularity. In the local induction approximation, we derive the equation of motion for a thin vortex filament against the background of such an accretion flow. We explicitly calculate the Hamiltonian for a fluid with an ultrarelativistic equation of state, ɛ ∝ n 4/3, and solve the problem of a centrally symmetric steady flow of such matter.

Keywords

Vortex Black Hole Event Horizon Flat Spacetime Relativistic Hydrodynamic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. Andersson and G. L. Comer, Living Rev. Relativ. 10, 1 (2007).ADSCrossRefGoogle Scholar
  2. 2.
    J. A. Font, Living Rev. Relativ. 11, 7 (2008).ADSCrossRefGoogle Scholar
  3. 3.
    L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 6: Fluid Mechanics (Nauka, Moscow, 1986; Butterworth-Heinemann, Oxford, 1987).Google Scholar
  4. 4.
    M. D. Duez, P. Marronetti, S. L. Shapiro, and T. W. Baumgarte, Phys. Rev. D: Part., Fields 67, 024004 (2003).ADSCrossRefMathSciNetGoogle Scholar
  5. 5.
    L. Baiotti, I. Hawke, P. J. Montero, F. Löffler, L. Rezzolla, N. Stergioulas, J. A. Font, and E. Seidel, Phys. Rev. D: Part., Fields, Gravitation, Cosmol. 71, 0024035 (2005).CrossRefGoogle Scholar
  6. 6.
    H. Dimmelmeier, J. Novak, J. A. Font, J. M. Ibáñez, and E. Müller, Phys. Rev. D: Part., Fields, Gravitation, Cosmol. 71, 0064023 (2005).CrossRefGoogle Scholar
  7. 7.
    M. D. Duez, Y. T. Liu, S. L. Shapiro, and B. C. Stephens, Phys. Rev. D: Part., Fields, Gravitation, Cosmol. 72, 024028 (2005).CrossRefGoogle Scholar
  8. 8.
    Z. B. Etienne, J. A. Faber, Y. T. Liu, S. L. Shapiro, K. Taniguchi, and T. W. Baumgarte, Phys. Rev. D: Part., Fields, Gravitation, Cosmol. 77, 084002 (2008).CrossRefGoogle Scholar
  9. 9.
    A. H. Taub, Phys. Rev. 94, 1468 (1954).ADSCrossRefMathSciNetGoogle Scholar
  10. 10.
    B. F. Schutz, Jr., Phys. Rev. D: Part., Fields 2, 2762 (1970).ADSCrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    J. R. Ray, J. Math. Phys. 13, 1451 (1972).ADSCrossRefzbMATHGoogle Scholar
  12. 12.
    J. D. Brown, Classical Quantum Gravity 10, 1579 (1993).ADSCrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    G. L. Comer and D. Langlois, Classical Quantum Gravity 11, 709 (1994).ADSCrossRefMathSciNetGoogle Scholar
  14. 14.
    V. P. Ruban, Phys. Rev. D: Part., Fields 62, 127504 (2000).ADSCrossRefMathSciNetGoogle Scholar
  15. 15.
    V. P. Ruban, JETP Lett. 99(3), 124 (2014).ADSCrossRefGoogle Scholar
  16. 16.
    P. Papadopoulos and J. A. Font, Phys. Rev. D: Part., Fields 58, 024005 (1998).ADSCrossRefMathSciNetGoogle Scholar
  17. 17.
    P. Painlevé, C. R. Hebd. Seances Acad. Sci. 173, 677 (1921).zbMATHGoogle Scholar
  18. 18.
    A. Gullstrand, Ark. Mat., Astron. Fys. 16, 1 (1922).Google Scholar
  19. 19.
    M. K. Parikh and F. Wilczek, Phys. Rev. Lett. 85, 5042 (2000).ADSCrossRefMathSciNetGoogle Scholar
  20. 20.
    G. E. Volovik, JETP Lett. 73(12), 637 (2001).ADSCrossRefGoogle Scholar
  21. 21.
    J. Ziprick and G. Kunstatter, Phys. Rev. D: Part., Fields, Gravitation, Cosmol. 79, 101503(R) (2009).CrossRefMathSciNetGoogle Scholar
  22. 22.
    Y. Kanai, M. Siino, and A. Hosoya, Prog. Theor. Phys. 125, 1053 (2011).ADSCrossRefzbMATHGoogle Scholar
  23. 23.
    L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 2: The Classical Theory of Fields (Butterworth-Heinemann, Oxford, 2000; Fizmatlit, Moscow, 2006).Google Scholar
  24. 24.
    V. P. Ruban, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 64, 036305 (2001).ADSCrossRefGoogle Scholar
  25. 25.
    J. Demaret and V. Moncrief, Phys. Rev. D: Part., Fields 21, 2785 (1980).ADSCrossRefMathSciNetGoogle Scholar
  26. 26.
    V. F. Zaitsev and A. D. Polyanin, Handbook of First-Order Partial Differential Equations (Taylor and Francis, London, 2002; Fizmatlit, Moscow, 2003).zbMATHGoogle Scholar
  27. 27.
    L. I. Petrich, S. L. Shapiro, and S. A. Teukolsky, Phys. Rev. Lett. 60, 1781 (1988).ADSCrossRefMathSciNetGoogle Scholar
  28. 28.
    S. L. Shapiro, Phys. Rev. D: Part., Fields 39, 2839 (1989).ADSCrossRefGoogle Scholar
  29. 29.
    E. Babichev, S. Chernov, V. Dokuchaev, and Yu. Eroshenko, Phys. Rev. D: Part., Fields, Gravitation, Cosmol. 78, 104027 (2008).CrossRefGoogle Scholar
  30. 30.
    B. N. Shashikanth and J. E. Marsden, Fluid Dyn. Res. 33, 333 (2003).ADSCrossRefzbMATHMathSciNetGoogle Scholar
  31. 31.
    E. Yu. Bannikova, V. M. Kontorovich, and S. A. Poslavskii, J. Exp. Theor. Phys. 117(2), 378 (2013).ADSCrossRefGoogle Scholar
  32. 32.
    F. C. Michel, Astrophys. Space Sci. 15, 153 (1972).ADSCrossRefGoogle Scholar
  33. 33.
    B. C. Beskin and V. I. Par’ev, Phys.—Usp. 36(6), 529 (1993).ADSCrossRefGoogle Scholar
  34. 34.
    B. C. Beskin and Yu. N. Pidoprygora, J. Exp. Theor. Phys. 80(4), 575 (1995).ADSGoogle Scholar
  35. 35.
    E. O. Babichev, V. I. Dokuchaev, and Yu. N. Eroshenko, J. Exp. Theor. Phys. 100(3), 528 (2005).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2014

Authors and Affiliations

  1. 1.Landau Institute for Theoretical PhysicsRussian Academy of SciencesChernogolovka, Moscow oblastRussia

Personalised recommendations