Advertisement

Quasi-isentropic compressibility of deuterium and helium at pressures of 1500–5000 GPa

  • M. A. Mochalov
  • R. I. Il’kaev
  • V. E. Fortov
  • A. L. Mikhailov
  • V. A. Raevskii
  • V. A. Ogorodnikov
  • A. A. Yukhimchuk
  • A. I. Davydov
  • N. N. Anashkin
  • V. A. Arinin
  • A. O. Blikov
  • A. Yu. Baurin
  • N. B. Davydov
  • V. A. Komrakov
  • A. I. Logvinov
  • S. F. Manachkin
  • A. V. Ryzhkov
  • B. I. Tkachenko
  • A. V. Fedorov
  • S. A. Finyushin
  • D. A. Kalashnikov
  • E. A. Chudakov
  • E. A. Pronin
  • E. A. Bakulina
Statistical, Nonlinear, and Soft Matter Physics

Abstract

The quasi-isentropic compressibilities of deuterium and helium plasmas are measured in the pressure range 1500–5000 GPa at densities up to 8 g/cm3 using spherical experimental devices and an X-ray complex consisting of three betatrons and a multichannel optoelectronic system for taking X-ray images. The experimental results demonstrate the possibilities of high-energy-density experimental physics to reproduce the extreme states of substance typical of the Universe under laboratory conditions using the energy of traditional condensed explosives.

Keywords

Experimental Device Maximum Compression Spall Strength Plasma Compression Helium Plasma 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. E. Fortov, Physics of High Energy Density (Fizmatlit, Moscow, 2012) [in Russian].Google Scholar
  2. 2.
    V. E. Fortov, Extreme States of Matter: On Earth and in the Cosmos (Fizmatlit, Moscow, 2008; Springer, Berlin, 2010).Google Scholar
  3. 3.
    N. W. Ashkroft, in High-Pressure Phenomena, Ed. by R. Y. Hemley, G. L. Chiarotti, M. Bernasconi, and L. Ulivi (IOS Press, Amsterdam, The Netherlands, 2002), p. 151.Google Scholar
  4. 4.
    F. V. Grigor’ev, S. B. Kormer, O. L. Mikhailova, A. P. Tolochko, and V. D. Urlin, JETP Lett. 16(5), 201 (1972).ADSGoogle Scholar
  5. 5.
    F. V. Grigor’ev, S. B. Kormer, O. L. Mikhailova, A. P. Tolochko, and V. D. Urlin, Sov. Phys. JETP 48, 847 (1978).ADSGoogle Scholar
  6. 6.
    V. P. Kopyshev, V. D. Urlin, in Shock Waves and Extreme States of Matter, Ed. by V. E. Fortov, L. V. Al’tshuler, R. F. Trunin, and A. I. Funtikov (Nauka, Moscow, 2000) [in Russian].Google Scholar
  7. 7.
    V. E. Fortov, R. I. Ilkaev, V. A. Arinin, V. V. Burtzev, V. A. Golubev, I. L. Iosilevskiy, V. V. Khrustalev, A. L. Mikhailov, M. A. Mochalov, V. Ya. Ternovoi, and M. V. Zhernokletov, Phys. Rev. Lett. 99, 185001 (2007).ADSCrossRefGoogle Scholar
  8. 8.
    M. V. Zhernokletov, V. K. Gryaznov, V. A. Arinin, V. N. Buzin, N. B. Davydov, R. I. Il’kaev, I. L. Iosilevskiy, A. L. Mikhailov, M. G. Novikov, V. V. Khrustalev, and V. E. Fortov, JETP Lett. 96(7), 432 (2012).ADSCrossRefGoogle Scholar
  9. 9.
    G. V. Boriskov, A. I. Bykov, R. I. Ilkaev, V. D. Selemir, G. V. Simakov, R. F. Trunin, V. D. Urlin, A. N. Shuikin, and W. J. Nellis, Phys. Rev. B: Condens. Matter 71, 092104 (2005).ADSCrossRefGoogle Scholar
  10. 10.
    G. V. Boriskov, A. I. Bykov, N. I. Egorov, et al., in Proceedings of the XI Khariton’s Topical Scientific Readings—International Conference “Extreme States of Substance, Detonation, Shock Waves,” Sarov, Russia, March 16–20, 2009, Ed. by A. L. Mikhailov (Russian Federal Nuclear Center—All-Russian Research Institute of Experimental Physics, Sarov, Russia, 2009), p. 771.Google Scholar
  11. 11.
    M. A. Mochalov, R. I. Il’kaev, V. E. Fortov, A. L. Mikhailov, Yu. M. Makarov, V. A. Arinin, S. K. Grishechkin, A. O. Blikov, V. A. Ogorodnikov, A. V. Ryzhkov, and V. K. Gryaznov, JETP Lett. 92(5), 300 (2010).ADSCrossRefGoogle Scholar
  12. 12.
    M. A. Mochalov, R. I. Il’kaev, V. E. Fortov, A. L. Mikhailov, Yu. M. Makarov, V. A. Arinin, A. O. Blikov, A. Yu. Baurin, V. A. Komrakov, V. A. Ogorodnikov, A. V. Ryzhkov, E. A. Pronin, and A. A. Yukhimchuk, J. Exp. Theor. Phys. 115(4), 614 (2012).ADSCrossRefGoogle Scholar
  13. 13.
    M. A. Mochalov, R. I. Il’kaev, V. E. Fortov, A. L. Mikhailov, V. A. Arinin, A. O. Blikov, A. Yu. Baurin, V. A. Komrakov, V. A. Ogorodnikov, A. V. Ryzhkov, and A. A. Yukhimchuk, JETP Lett. 96(3), 158 (2012).ADSCrossRefGoogle Scholar
  14. 14.
    O. T. Strand, D. R. Goosman, C. Martinez, T. L. Whitworth, and W. W. Kuhlow, Rev. Sci. Instrum. 77, 083108 (2006).ADSCrossRefGoogle Scholar
  15. 15.
    Yu. P. Kuropatkin, V. D. Mironenko, V. N. Suvorov, and A. A. Volkov, in Digest of Technical Papers of the Eleventh IEEE International Pulsed Power Conference, Baltimore, Maryland, United States, June 29–July 2, 1997, Ed. by G. Cooperstein and I. Vikovitsky (Baltimore, 1997), p. 1669.Google Scholar
  16. 16.
    V. A. Ogorodnikov, A. L. Mikhailov, V. V. Burtsev, S. A. Lobastov, S. V. Erunov, A. V. Romanov, A. V. Rudnev, E. V. Kulakov, Yu. B. Bazarov, V. V. Glushikhin, I. A. Kalashnik, V. A. Tsyganov, and B. I. Tkachenko, J. Exp. Theor. Phys. 109(3), 530 (2009).ADSCrossRefGoogle Scholar
  17. 17.
    A. N. Golubkov, A. A. Kononenko, and A. A. Yukhimchuk, Fusion Sci. Technol. 48, 527 (2005).Google Scholar
  18. 18.
    N. F. Gavrilov, G. G. Ivanova, V. I. Selin, et al., Vopr. At. Nauki Tekh., Ser.: Met. Programmy Chislennogo Resheniya Zadach Mat. Fiz., No. 3, 11 (1982).Google Scholar
  19. 19.
    O. A. Kleshchevnikov, Yu. N. Tyunyaev, V. N. Sofronov, V. A. Ogorodnikov, A. G. Ivanov, and V. N. Mineev, Combust., Explos., Shock Waves 22(4), 482 (1986).CrossRefGoogle Scholar
  20. 20.
    A. Michels, W. de Graff, T. Wassenaar, J. M. H. Levelt, and P. Louwerse, Physica (Amsterdam) 25, 25 (1959).ADSCrossRefGoogle Scholar
  21. 21.
    V. A. Arinin, Tsifrovaya Obrab. Signalov 8(2), 52 (2006).Google Scholar
  22. 22.
    G. I. Taylor, Proc. R. Soc. London 201, 1065 (1950).Google Scholar
  23. 23.
    A. G. Ivanov, V. A. Ogorodnikov, G. Ya. Karpenko, et al., Prikl. Mekh. Tekh. Fiz. 35, 163 (1994).Google Scholar
  24. 24.
    V. N. Zubarev and A. A. Evstigneev, Combust., Explos., Shock Waves 20(6), 699 (1984).CrossRefGoogle Scholar
  25. 25.
    J. M. Brown, J. N. Fritz, and R. S. Hixson, J. Appl. Phys. 88, 5496 (2000).ADSCrossRefGoogle Scholar
  26. 26.
    B. J. Jensen, G. T. Gray III, and R. S. Hixson, J. Appl. Phys. 105, 103502 (2009).ADSCrossRefGoogle Scholar
  27. 27.
    LASL Shock Hugoniot Data, Ed. by S. P. Marsh (University of California Press, Berkley, California, United States, 1980).Google Scholar
  28. 28.
    R. F. Trunin, L. F. Gudarenko, M. V. Zhernokletov, and G. V. Simakov, in Experimental Data on Shock-Wave Compression and Adiabatic Expansion of Condensed Substances, Ed. by R. F. Trunin (Russian Federal Nuclear Center—All-Russian Research Institute of Experimental Physics, Sarov, 2001) [in Russian].Google Scholar
  29. 29.
    B. L. Glushak, L. F. Gudarenko, Yu. M. Styazhkin, and V. A. Zherebtsov, Vopr. At. Nauki Tekh., Ser.: Mat. Model. Fiz. Protsessov, No. 1, 32 (1991).Google Scholar
  30. 30.
    SESAME: Los Alamos National Laboratory Equation of State Database, Ed. by S. P. Lyon and J. D. Johnson (Group T-1, Los Alamos National Laboratory, Los Alamos, New Mexico, United States, 1992), Document LA-UR-92-3407, p. 1.Google Scholar
  31. 31.
    B. A. Nadykto, A. I. Lomaikin, I. N. Pavlusha, and M. O. Shirshova, Vopr. At. Nauki Tekh., Ser.: Teor. Prikl. Fiz., No. 2, 43 (2012).Google Scholar
  32. 32.
    B. L. Glushak, L. F. Gudarenko, and Yu. M. Styazhkin, Vopr. At. Nauki Tekh., Ser.: Mat. Model. Fiz. Protsessov, No. 2, 57 (1991).Google Scholar
  33. 33.
    V. E. Fortov, Equations of State of Matter: From the Ideal Gas to the Quark-Gluon Plasma (Fizmatlit, Moscow, 2012) [in Russian].Google Scholar
  34. 34.
    B. L. Glushak, and O. N. Ignatova, Vopr. At. Nauki Tekh., Ser.: Mat. Model. Fiz. Protsessov, No. 2, 45 (1998).Google Scholar
  35. 35.
    V. P. Kopyshev and V. V. Khrustalev, Prikl. Mekh. Tekh. Fiz. 21, 122 (1980).Google Scholar
  36. 36.
    G. Kerley, Equation of State for Hydrogen and Deuterium (Sandia National Laboratory, Albuquerque, New Mexico, United States, 2003), Rep. SAND2003-3613.CrossRefGoogle Scholar
  37. 37.
    S. M. Bakhrakh, S. V. Velichko, V. F. Spiridonov, et al., Vopr. At. Nauki Tekh., Ser.: Mat. Model. Fiz. Protsessov, No. 4, 1 (2004).Google Scholar
  38. 38.
    V. D. Urlin, Preprint No. 109-2011, RFYATS-VNIIEF (Russian Federal Nuclear Center—All-Russian Research Institute of Experimental Physics, Sarov, 2011).Google Scholar
  39. 39.
    V. P. Kopyshev, Prikl. Mekh. Tekh. Fiz. 12, 103 (1971).Google Scholar
  40. 40.
    W. G. Hoover, S. G. Gray, and K. W. Johnson, J. Chem. Phys. 55, 1128 (1971).ADSCrossRefGoogle Scholar
  41. 41.
    N. B. Vargaftik, Handbook of Physical Properties of Liquids and Gases (Nauka, Moscow, 1972; Hemisphere, New York, 1983).Google Scholar
  42. 42.
    V. K. Gryaznov, I. L. Iosilevskiy, and V. E. Fortov, http://www.ihed.ras.ru/npp2011/pres/gryaznov.pdf.

Copyright information

© Pleiades Publishing, Inc. 2014

Authors and Affiliations

  • M. A. Mochalov
    • 1
  • R. I. Il’kaev
    • 1
  • V. E. Fortov
    • 2
  • A. L. Mikhailov
    • 1
  • V. A. Raevskii
    • 1
  • V. A. Ogorodnikov
    • 1
  • A. A. Yukhimchuk
    • 1
  • A. I. Davydov
    • 1
  • N. N. Anashkin
    • 1
  • V. A. Arinin
    • 1
  • A. O. Blikov
    • 1
  • A. Yu. Baurin
    • 1
  • N. B. Davydov
    • 1
  • V. A. Komrakov
    • 1
  • A. I. Logvinov
    • 1
  • S. F. Manachkin
    • 1
  • A. V. Ryzhkov
    • 1
  • B. I. Tkachenko
    • 1
  • A. V. Fedorov
    • 1
  • S. A. Finyushin
    • 1
  • D. A. Kalashnikov
    • 1
  • E. A. Chudakov
    • 1
  • E. A. Pronin
    • 1
  • E. A. Bakulina
    • 1
  1. 1.Russian Federal Nuclear CenterAll-Russian Research Institute of Experimental PhysicsSarov, Nizhni Novgorod oblastRussia
  2. 2.Joint Institute for High TemperaturesRussian Academy of SciencesMoscowRussia

Personalised recommendations