Singularity formation on a fluid interface during the Kelvin-Helmholtz instability development

Statistical, Nonlinear, and Soft Matter Physics

Abstract

The dynamics of singularity formation on the interface between two ideal fluids is studied for the Kelvin-Helmholtz instability development within the Hamiltonian formalism. It is shown that the equations of motion derived in the small interface angle approximation (gravity and capillary forces are neglected) admit exact solutions in the implicit form. The analysis of these solutions shows that, in the general case, weak root singularities are formed on the interface in a finite time for which the curvature becomes infinite, while the slope angles remain small. For Atwood numbers close to unity in absolute values, the surface curvature has a definite sign correlated with the boundary deformation directed towards the light fluid. For the fluids with comparable densities, the curvature changes its sign in a singular point. In the particular case of the fluids with equal densities, the obtained results are consistent with those obtained by Moore based on the Birkhoff-Rott equation analysis.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sir Horace Lamb, Hydrodynamics (Dover, New York, 1945; OGIZ, Moscow, 1947).Google Scholar
  2. 2.
    L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 6: Fluid Mechanics (Nauka, Moscow, 1988; Butterworth-Heinemann, Oxford, 1989).Google Scholar
  3. 3.
    Yu. A. Stepanyants and A. L. Fabrikant, Sov. Phys.—Usp. 32(9), 783 (1989).ADSCrossRefMathSciNetGoogle Scholar
  4. 4.
    E. A. Kuznetsov and P. M. Lushnikov, J. Exp. Theor. Phys. 81(2), 332 (1995).ADSGoogle Scholar
  5. 5.
    D. W. Moore, Proc. R. Soc. London, Ser. A 365, 105 (1979).ADSCrossRefMATHGoogle Scholar
  6. 6.
    P. G. Saffman, Vortex Dynamics (Cambridge University Press, Cambridge, 1992).MATHGoogle Scholar
  7. 7.
    D. I. Meiron, G. R. Baker, and S. A. Orszag, J. Fluid Mech. 114, 283 (1982).ADSCrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    R. Krasny, J. Fluid Mech. 167, 65 (1986).ADSCrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    M. Shelley, J. Fluid Mech. 244, 493 (1992).ADSCrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    R. Krasny, J. Comput. Phys. 65, 292 (1986).ADSCrossRefMATHGoogle Scholar
  11. 11.
    A. Verga, in Instabilities and Nonequilibrium Structures, Ed. by O. Descalzi, J. Martínez, and S. Rica (Kluwer, Dordrecht, The Netherlands, 2004), Vol. 9, p. 361.Google Scholar
  12. 12.
    G. R. Baker, D. I. Meiron, and S. A. Orszag, Phys. Fluids 23, 1485 (1980).ADSCrossRefMATHGoogle Scholar
  13. 13.
    G. R. Baker, D. I. Meiron, and S. A. Orszag, J. Fluid Mech. 123, 477 (1982).ADSCrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    R. M. Kerr, J. Comput. Phys. 76, 48 (1988).ADSCrossRefMATHGoogle Scholar
  15. 15.
    C. Matsuoka and K. Nishihara, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 73, 026304 (2006).ADSCrossRefMathSciNetGoogle Scholar
  16. 16.
    G. Baker, R. E. Caflisch, and M. Siegel, J. Fluid Mech. 252, 51 (1993).ADSCrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    R. E. Caflisch, O. F. Orellana, and M. Siegel, SIAM J. Appl. Math. 50, 1517 (1990).ADSCrossRefMATHMathSciNetGoogle Scholar
  18. 18.
    E. A. Kuznetsov, M. D. Spector, and V. E. Zakharov, Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 49, 1283 (1994).CrossRefMathSciNetGoogle Scholar
  19. 19.
    E. A. Kuznetsov, M. D. Spector, and V. E. Zakharov, Phys. Lett. A 182, 387 (1993).ADSCrossRefMathSciNetGoogle Scholar
  20. 20.
    V. M. Kontorovich, Radiophys. Quantum Electron. 19(6), 621 (1976); E. A. Kuznetsov and M. D. Spektor, Sov. Phys. JETP 44 (1), 136 (1976).ADSCrossRefMathSciNetGoogle Scholar
  21. 21.
    V. E. Zakharov, Prikl. Mekh. Tekh. Fiz. 2, 86 (1968).Google Scholar
  22. 22.
    V. E. Zakharov and E. A. Kuznetsov, Phys.—Usp. 40(11), 1087 (1997).ADSCrossRefGoogle Scholar
  23. 23.
    N. M. Zubarev, Phys. Lett. A 243, 128 (1998).ADSCrossRefGoogle Scholar
  24. 24.
    N. M. Zubarev, J. Exp. Theor. Phys. 87(6), 1110 (1998).ADSCrossRefGoogle Scholar
  25. 25.
    E. A. Kochurin, N. M. Zubarev, and O. V. Zubareva, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 88, 023014 (2013).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2014

Authors and Affiliations

  1. 1.Institute of Electrophysics, Ural BranchRussian Academy of SciencesYekaterinburgRussia
  2. 2.Lebedev Physical InstituteRussian Academy of SciencesMoscowRussia
  3. 3.Novosibirsk State UniversityNovosibirskRussia
  4. 4.Landau Institute for Theoretical PhysicsRussian Academy of SciencesChernogolovka, Moscow oblastRussia

Personalised recommendations