Scattering of electrons by vacuum fluctuations of plasma waves

  • B. A. VeklenkoEmail author
  • V. P. Afanas’ev
  • A. V. Lubenchenko
Atoms, Molecules, Optics


Interaction between a probe electron beam and longitudinal electromagnetic oscillations of the Fermi plasma in metals (plasmons) is investigated by the methods of quantum electrodynamics. The quantum description of plasmons allows one to construct a consistent theory of the scattering process and point out the applicability limits of the existing semiclassical theories. The quantum description of plasmons leads to the concept of electromagnetic vacuum of longitudinal waves, which is the subject of the present study. The vacuum of longitudinal waves significantly deforms the shape of plasma dielectric permittivity, thus leading to the broadening of Langmuir peaks of scattered electrons, which has so far resisted theoretical analysis. The presence of the electromagnetic vacuum of longitudinal plasma waves has a considerable effect on the integral scattering probability of electrons by plasmons.


Dielectric Permittivity Plasma Wave Langmuir Wave Quantum Description Probe Particle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. Rudberg, Phys. Rev. 50, 138 (1936).ADSCrossRefGoogle Scholar
  2. 2.
    L. Marton and L. B. Leder, Phys. Rev. 94, 203 (1954).ADSCrossRefGoogle Scholar
  3. 3.
    R. F. Egerton and Z. L. Wang, Ultramicroscopy 32, 137 (1990).CrossRefGoogle Scholar
  4. 4.
    R. H. Ritchie, Phys. Rev. 106, 874 (1957).ADSCrossRefMathSciNetGoogle Scholar
  5. 5.
    D. Pines and D. Bohm, Phys. Rev. 85, 338 (1952).ADSCrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    L. Tonks and I. Langmuir, Phys. Rev. 33, 195 (1929).ADSCrossRefzbMATHGoogle Scholar
  7. 7.
    A. A. Vlasov, Zh. Eksp. Teor. Fiz. 8, 291 (1938).zbMATHGoogle Scholar
  8. 8.
    I. I. Gol’dman, Zh. Eksp. Teor. Fiz. 17, 681 (1947).Google Scholar
  9. 9.
    Yu. L. Klimontovich and V. P. Silin, Zh. Eksp. Teor. Fiz. 23, 151 (1952).zbMATHGoogle Scholar
  10. 10.
    D. Bohm and D. Pines, Phys. Rev. 92, 609 (1953).ADSCrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    R. A. Ferrell, Phys. Rev. 101, 554 (1955).ADSCrossRefGoogle Scholar
  12. 12.
    R. H. Ritchie, Philos. Mag. 36, 463 (1977).ADSCrossRefGoogle Scholar
  13. 13.
    S. Tougaard and J. Kraar, Phys. Rev. B: Condens. Matter 43, 1651 (1991).ADSCrossRefGoogle Scholar
  14. 14.
    N. Bohr and L. Rosenfeld, Phys. Rev. 78, 794 (1950).ADSCrossRefzbMATHGoogle Scholar
  15. 15.
    W. Heitler, The Quantum Theory of Radiation (Dover, New York, 1954; Inostrannaya Literatura, Moscow, 1956).zbMATHGoogle Scholar
  16. 16.
    B. A. Veklenko, Prikl. Fiz., No. 4, 5 (2011).Google Scholar
  17. 17.
    B. A. Veklenko, in Abstracts of Papers of the Jubilee Scientific Conference Dedicated to the 50th Anniversary of Joint Institute for High Temperatures, Russian Academy of Sciences, Moscow, Russia, October 21, 2010 (Joint Institute for High Temperatures, Russian Academy of Sciences, Moscow, 2011), p. 496.Google Scholar
  18. 18.
    M. V. Kuzelev, Plasma Phys. Rep. 36(2), 116 (2010).ADSCrossRefGoogle Scholar
  19. 19.
    Yu. V. Bobylev and M. V. Kuzelev, Plasma Phys. Rep. 37(10), 890 (2011).ADSCrossRefGoogle Scholar
  20. 20.
    P. A. Cherenkov, Dokl. Akad. Nauk SSSR 14, 101 (1937).Google Scholar
  21. 21.
    B. A. Veklenko, Inzh. Fiz., No. 1, 14 (2013).Google Scholar
  22. 22.
    V. P. Silin and A. A. Rukhadze, Electromagnetic Properties of Plasma and Plasma-Like Media (LIBROKOM, Moscow, 2012) [in Russian].Google Scholar
  23. 23.
    A. I. Akhiezer and V. B. Berestetskii, Quantum Electrodynamics (Interscience, New York, 1965; Nauka, Moscow, 1969).Google Scholar
  24. 24.
    H. B. Callen and T. A. Welton, Phys. Rev. 83, 34 (1951).ADSCrossRefzbMATHMathSciNetGoogle Scholar
  25. 25.
    N. N. Bogolyubov and S. V. Tyablikov, Sov. Phys. Dokl. 4, 589 (1959).ADSzbMATHGoogle Scholar
  26. 26.
    L. V. Keldysh, Sov. Phys. JETP 20, 1018 (1964).MathSciNetGoogle Scholar
  27. 27.
    Sh. M. Kogan, Sov. Phys. Solid State 2, 1074 (1960).Google Scholar
  28. 28.
    V. P. Budak and B. A. Veklenko, J. Quant. Spectrosc. Radiat. Transfer 112, 864 (2011).ADSCrossRefGoogle Scholar
  29. 29.
    J. Lindhard and K. Dan, Mat.-Fys. Medd.—K. Dan. Vidensk. Selsk. 28, 8 (1954).Google Scholar
  30. 30.
    D. Pines, Elementary Excitations in Solids (Benjamin, New York, 1964), Chap. 4.zbMATHGoogle Scholar
  31. 31.
    J. J. Quinn, Phys. Rev. 126, 1453 (1962).ADSCrossRefzbMATHGoogle Scholar
  32. 32.
    L. Kleiman, Phys. Rev. B: Solid State 3, 2982 (1971).ADSCrossRefGoogle Scholar
  33. 33.
    V. P. Afanas’ev, A. V. Lubenchenko, and M. K. Gubkin, Eur. Phys. J. B 37, 117 (2004).ADSCrossRefGoogle Scholar
  34. 34.
    E. Fermi, Phys. Rev. 57, 485 (1940).ADSCrossRefGoogle Scholar
  35. 35.
    L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Volume 8: Electrodynamics of Continuous Media (Nauka, Moscow, 1982; Butterworth-Heinemann, Oxford, 1984), p. 542.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2014

Authors and Affiliations

  • B. A. Veklenko
    • 1
    Email author
  • V. P. Afanas’ev
    • 1
  • A. V. Lubenchenko
    • 1
  1. 1.National Research University “Moscow Power Engineering Institute” (Technical University)MoscowRussia

Personalised recommendations