Advertisement

Determination of the structure of hyperfine sublevels of Rb in strong magnetic fields by means of the coherent population trapping technique

  • A. Sargsyan
  • R. Mirzoyan
  • T. Vartanyan
  • D. Sarkisyan
Atoms, Molecules, Optics

Abstract

The splitting of hyperfine sublevels of the 85Rb atom in strong magnetic fields has been studied by means of the coherent population trapping technique. Narrow resonances with a high signal-to-noise ratio have been detected in a 30-μm-thick spectroscopic cell. The magnetic field in the direction transverse to the laser beams has been created by permanent magnets and has reached 1600 G. Owing to the exclusive narrowness of the cell, the field in it is almost uniform. The break of the coupling between the electronic and nuclear moments, as well as the transition to the Paschen-Back regime in magnetic fields above 600 G, has been observed. The derivatives of the frequency shifts of the observed resonances and their asymptotic values in strong magnetic fields have been determined in terms of the magnetic field strength. The experimental results have been interpreted within a theoretical model based on the known constants of the hyperfine structure of the Rb atom.

Keywords

Magnetic Field Frequency Shift Strong Magnetic Field Electromagnetically Induce Transparency Transverse Magnetic Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. D. Agap’ev, M. B. Gornyi, B. G. Matisov, and Yu. V. Rozhdestvenskii, Phys.—Usp. 36(9), 763 (1993).ADSCrossRefGoogle Scholar
  2. 2.
    R. Wynands and A. Nagel, Appl. Phys. B 68, 1 (1999).ADSCrossRefGoogle Scholar
  3. 3.
    M. Fleischhauer, A. Imamoglu, and J. P. Marangos, Rev. Mod. Phys. 77, 633 (2005).ADSCrossRefGoogle Scholar
  4. 4.
    A. S. Zibrov, C. Y. Ye, Y. V. Rostovtsev, A. B. Matsko, and M. O. Scully, Phys. Rev. A: At., Mol., Opt. Phys. 65, 043817 (2002).ADSCrossRefGoogle Scholar
  5. 5.
    A. Sargsyan, R. Mirzoyan, D. Sarkisyan, J. Exp. Theor. Phys. 115 (5), 769 (2012).Google Scholar
  6. 6.
    S. A. Zibrov, V. L. Velichanskii, A. S. Zibrov, A. V. Taichenachev, and V. I. Yudin JETP Lett. 82, 534 (2005).Google Scholar
  7. 7.
    F. Gruet, A. Al-Samaneh, E. Kroemer, L. Bimboes, D. Miletic, C. Affolderbach, D. Wahl, R. Boudot, G. Mileti, and R. Michalzik, Opt. Express 21, 5781 (2013).ADSCrossRefGoogle Scholar
  8. 8.
    E. B. Aleksandrov, Phys.—Usp. 53(5), 487 (2010).ADSCrossRefGoogle Scholar
  9. 9.
    A. Sargsyan, R. Mirzoyan, and D. Sarkisyan, JETP Lett. 96(5), 303 (2012).ADSCrossRefGoogle Scholar
  10. 10.
    A. Sargsyan, R. Mirzoyan, and D. Sarkisyan, Opt. Spectrosc. 113(5), 456 (2012).ADSCrossRefGoogle Scholar
  11. 11.
    A. Sargsyan, R. Mirzoyan, A. Papoyan, and D. Sarkisyan, Opt. Lett. 37, 4871 (2012).ADSCrossRefGoogle Scholar
  12. 12.
    S. Mitra, S. Dey, M. Hossain, P. N. Ghosh, and B. Ray, J. Phys. B: At., Mol. Opt. Phys. 46, 075002 (2013).ADSCrossRefGoogle Scholar
  13. 13.
    A. Sargsyan, Y. Pashayan-Leroy, C. Leroy, R. Mirzoyan, A. Papoyan, and D. Sarkisyan, Appl. Phys. B 105, 767 (2011).ADSCrossRefGoogle Scholar
  14. 14.
    H. N. De Freitas, M. Oria, and M. Chevrollier, Appl. Phys. B 75, 703 (2002).ADSCrossRefGoogle Scholar
  15. 15.
    A. Sargsyan, D. Sarkisyan, D. Staedter, and A. M. Akulshin, Opt. Spectrosc. 101(5), 762 (2006).ADSCrossRefGoogle Scholar
  16. 16.
    A. Sargsyan, A. V. Papoyan, D. Sarkisyan, and A. Weis, Eur. Phys. J.: Appl. Phys. 48, 20701 (2009).Google Scholar
  17. 17.
    A. Sargsyan, G. Hakhumyan, A. Papoyan, D. Sarkisyan, A. Atvars, and M. Auzinsh, Appl. Phys. Lett. 93, 021119 (2008).ADSCrossRefGoogle Scholar
  18. 18.
    M. Auzinsh, D. Budker, and S. M. Rochester, Optically Polarized Atoms: Understanding Light-Atom Interactions (Oxford University Press, Oxford, 2010).Google Scholar
  19. 19.
    E. B. Alexandrov, M. P. Chaika, and G. I. Khvostenko, Interference of Atomic States (Springer-Verlag, Berlin, 1993).CrossRefGoogle Scholar
  20. 20.
    D. A. Steck, Rubidium 85 D Line Data, revised 23 December 2010. http://steck.us/alkalidata.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2014

Authors and Affiliations

  • A. Sargsyan
    • 1
  • R. Mirzoyan
    • 1
  • T. Vartanyan
    • 2
  • D. Sarkisyan
    • 1
  1. 1.Institute for Physical ResearchAcademy of Sciences of ArmeniaAshtarakArmenia
  2. 2.St. Petersburg National Research University of Information Technologies, Mechanics, and OpticsSt. PetersburgRussia

Personalised recommendations