Journal of Experimental and Theoretical Physics

, Volume 118, Issue 2, pp 205–216 | Cite as

Time-dependent photon correlations for incoherently pumped quantum dot strongly coupled to the cavity mode

  • A. V. Poshakinskiy
  • A. N. Poddubny
Atoms, Molecules, Optics


The time dependence of correlations between the photons emitted from a microcavity with an embedded quantum dot under incoherent pumping is studied theoretically. Analytic expressions for the second-order correlation function g (2)(t) are presented in strong and weak coupling regimes. The qualitative difference between the incoherent and coherent pumping schemes in the strong coupling case is revealed: under incoherent pumping, the correlation function demonstrates pronounced Rabi oscillations, but in the resonant pumping case, these oscillations are suppressed. At high incoherent pumping, the correlations decay monoexponentially. The decay time nonmonotonically depends on the pumping value and has a maximum corresponding to the self-quenching transition.


Density Matrix Cavity Mode Photon Number Strong Coupling Regime Rabi Oscillation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Kavokin, J. Baumberg, G. Malpuech, and F. Laussy, Microcavities (Clarendon, Oxford, 2006).Google Scholar
  2. 2.
    A. Muller, W. Fang, J. Lawall, and G. S. Solomon, Phys. Rev. Lett. 103, 217402 (2009).ADSCrossRefGoogle Scholar
  3. 3.
    A. Dousse, J. Suffczynski, A. Beveratos, O. Krebs, A. Lemaitre, I. Sagnes, J. Bloch, P. Voisin, and P. Senellart, Nature (London) 466, 217 (2010).ADSCrossRefGoogle Scholar
  4. 4.
    A. Kuhn and D. Ljunggren, Contemp. Phys. 51, 289 (2010).ADSCrossRefGoogle Scholar
  5. 5.
    H. Carmichael, An Open Systems Approach to Quantum Optics (Springer-Verlag, New York (1993).zbMATHGoogle Scholar
  6. 6.
    E. del Valle, A. Gonzalez-Tudela, F. P. Laussy, C. Tejedor, and M. J. Hartmann, Phys. Rev. Lett. 109, 183601 (2012).ADSCrossRefGoogle Scholar
  7. 7.
    P. Michler, A. Imamoǧlu, M. D. Mason, P. J. Carson, G. F. Strouse, and S. K. Buratto, Nature (London) 406, 968 (2000).ADSCrossRefGoogle Scholar
  8. 8.
    Z. Yuan, B. E. Kardynal, R. M. Stevenson, A. J. Shields, C. J. Lobo, K. Cooper, N. S. Beattie, D. A. Ritchie, and M. Pepper, Science (Washington) 295, 102 (2002).ADSCrossRefGoogle Scholar
  9. 9.
    M. Calic, P. Gallo, M. Felici, K. A. Atlasov, B. Dwir, A. Rudra, G. Biasiol, L. Sorba, G. Tarel, V. Savona, and E. Kapon, Phys. Rev. Lett. 106, 227402 (2011).ADSCrossRefGoogle Scholar
  10. 10.
    C. A. Kessler, M. Reischle, F. Hargart, W.-M. Schulz, M. Eichfelder, R. Roβbach, M. Jetter, P. Michler, P. Gartner, M. Florian, C. Gies, and F. Jahnke, Phys. Rev. B: Condens. Matter 86, 115326 (2012).ADSCrossRefGoogle Scholar
  11. 11.
    M. Abbarchi, T. Kuroda, T. Mano, M. Gurioli, and K. Sakoda, Phys. Rev. B: Condens. Matter 86, 115330 (2012).ADSCrossRefGoogle Scholar
  12. 12.
    G. Khitrova, H. M. Gibbs, M. Kira, S. W. Koch, and A. Scherer, Nat. Phys. 2, 81 (2006).CrossRefGoogle Scholar
  13. 13.
    S. Reitzenstein and A. Forchel, J. Phys. D: Appl. Phys. 43, 033001 (2010).ADSCrossRefGoogle Scholar
  14. 14.
    M. Nomura, N. Kumagai, S. Iwamoto, Y. Ota, and Y. Arakawa, Nat. Phys. 6, 279 (2010).CrossRefGoogle Scholar
  15. 15.
    A. Tandaechanurat, S. Ishida, D. Guimard, M. Nomura, S. Iwamoto, and Y. Arakawa, Nat. Photonics 5, 91 (2011).ADSCrossRefGoogle Scholar
  16. 16.
    C. Schneider, T. Heindel, A. Huggenberger, T. A. Niederstrasser, S. Reitzenstein, A. Forchel, S. Hofling, and M. Kamp, Appl. Phys. Lett. 100, 091108 (4 pages) (2012).ADSCrossRefGoogle Scholar
  17. 17.
    H. J. Kimble, Phys. Scr., T 76, 127 (1998).ADSCrossRefGoogle Scholar
  18. 18.
    T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, Nature (London) 432, 200 (2004).ADSCrossRefGoogle Scholar
  19. 19.
    J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, Nature (London) 432, 197 (2004).ADSCrossRefGoogle Scholar
  20. 20.
    M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge University Press, Cambridge, United Kingdom, 1997).CrossRefGoogle Scholar
  21. 21.
    J. McKeever, A. Boca, A. D. Boozer, J. R. Buck, and H. J. Kimble, Nature (London) 425, 268 (2003).ADSCrossRefGoogle Scholar
  22. 22.
    A. D. Boozer, A. Boca, J. R. Buck, J. McKeever, and H. J. Kimble, Phys. Rev. A: At., Mol., Opt. Phys. 70, 023814 (2004).ADSCrossRefGoogle Scholar
  23. 23.
    H. J. Kimble, M. Dagenais, and L. Mandel, Phys. Rev. Lett. 39, 691 (1977).ADSCrossRefGoogle Scholar
  24. 24.
    D. Walls, Nature (London) 280, 451 (1979).ADSCrossRefGoogle Scholar
  25. 25.
    M. Hennrich, A. Kuhn, and G. Rempe, Phys. Rev. Lett. 94, 053604 (2005).ADSCrossRefGoogle Scholar
  26. 26.
    H. Jabri and H. Eleuch, Commun. Theor. Phys. 56, 134 (2011).ADSCrossRefzbMATHGoogle Scholar
  27. 27.
    Y. Mu and C. M. Savage, Phys. Rev. A: At., Mol., Opt. Phys. 46, 5944 (1992).ADSCrossRefGoogle Scholar
  28. 28.
    E. del Valle, F. P. Laussy, and C. Tejedor, Phys. Rev. B: Condens. Matter 79, 235326 (2009).ADSCrossRefGoogle Scholar
  29. 29.
    E. del Valle and F. P. Laussy, Phys. Rev. A: At., Mol., Opt. Phys. 84, 043816 (2011).ADSCrossRefGoogle Scholar
  30. 30.
    D. Press, S. Götzinger, S. Reitzenstein, C. Hofmann, A. Löffler, M. Kamp, A. Forchel, and Y. Yamamoto, Phys. Rev. Lett. 98, 117402 (2007).ADSCrossRefGoogle Scholar
  31. 31.
    E. Illes and S. Hughes, Phys. Rev. B: Condens. Matter 81, 121310 (2010).ADSCrossRefGoogle Scholar
  32. 32.
    N. S. Averkiev, M. M. Glazov, and A. N. Poddubnyi, J. Exp. Theor. Phys. 108, 836 (2009).ADSCrossRefGoogle Scholar
  33. 33.
    A. N. Poddubny, M. M. Glazov, and N. S. Averkiev, New J. Phys. 15, 025016 (2013).ADSCrossRefGoogle Scholar
  34. 34.
    A. N. Poddubny, M. M. Glazov, and N. S. Averkiev, Phys. Rev. B: Condens. Matter 82, 205330 (2010).ADSCrossRefGoogle Scholar
  35. 35.
    E. T. Jaynes and F. W. Cummings, Proc. IEEE 51, 89 (1963).CrossRefGoogle Scholar
  36. 36.
    S. Reitzenstein and A. Forchel, J. Phys. D: Appl. Phys. 43, 033001 (2010).ADSCrossRefGoogle Scholar
  37. 37.
    H. Haken, Z. Phys. 181, 96 (1964).ADSCrossRefGoogle Scholar
  38. 38.
    M. M. Glazov, M. A. Semina, E. Y. Sherman, and A. V. Kavokin, Phys. Rev. B 88, 041309 (R) (2013).ADSCrossRefGoogle Scholar
  39. 39.
    F. P. Laussy, E. del Valle, and C. Tejedor, Phys. Rev. B: Condens. Matter 79, 235325 (2009).ADSCrossRefGoogle Scholar
  40. 40.
    H. Risken, The Fokker Planck Equation: Methods of Solution and Applications (Springer-Verlag, Berlin, 1989).CrossRefzbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2014

Authors and Affiliations

  1. 1.Ioffe Physicotechnical InstituteRussian Academy of Sciences St. PetersburgSt. PetersburgRussia

Personalised recommendations