Advertisement

Ab initio study of the formation of vacancy and hydrogen-vacancy complexes in palladium and its hydride

  • I. A. Supryadkina
  • D. I. Bazhanov
  • A. S. Ilyushin
Solids and Liquids

Abstract

We report on the results of ab initio calculations of vacancy and hydrogen-vacancy complexes in palladium and palladium hydride. Comparative analysis of the energies of the formation of defect complexes in palladium and its hydride has revealed that the formation of vacancy clusters is easier in the palladium hydride structure. Investigation of hydrogen-vacancy complexes in bulk crystalline palladium has shown that a hydrogen atom and a vacancy interact to form a stable hydrogen-vacancy (H-Vac) defect complex with a binding energy of E b = −0.21 eV. To investigate the initial stage in the formation of hydrogen-vacancy complexes (H n -Vac m ), we consider the clusterization of defects into clusters containing H-Vac and H2-Vac complexes as a structural unit. It is found that hydrogen-vacancy complexes form 2D defect structures in palladium in the (100)-type planes.

Keywords

Palladium Hydride Formation Energy Mutual Arrangement Defect Complex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. Guther and A. Otto, J. Alloys Compd. 293–295, 889 (1999).CrossRefGoogle Scholar
  2. 2.
    G. Alefeld and J. Volkl, Hydrogen in Metals (Springer-Verlag, Heidelberg, Germany, 1978; Mir, Moscow, 1981), Vols. 1, 2.Google Scholar
  3. 3.
    Y. Fukai, The Metal-Hydrogen System: Basic Bulk Properties (Springer-Verlag, Berlin, 1967).Google Scholar
  4. 4.
    F. A. Lewis, The Palladium Hydrogen System (Academic, New York, 1993).Google Scholar
  5. 5.
    O. B. Christensen, P. D. Ditlevsen, K. W. Jacobsen, P. Stoltze, and J. K. Norskov, Phys. Rev. B: Condens. Matter 40, 1993 (1989).ADSCrossRefGoogle Scholar
  6. 6.
    A. Gross and M. Scheffler, Phys. Rev. B: Condens. Matter 57, 2493 (1998).ADSCrossRefGoogle Scholar
  7. 7.
    D. Wetzig, R. Dopheide, M. Rutkowski, R. David, and H. Zacharias, Phys. Rev. Lett. 76, 463 (1996).ADSCrossRefGoogle Scholar
  8. 8.
    X. Ke and G. J. Kramer, Phys. Rev. B: Condens. Matter 66, 184304 (2002).ADSCrossRefGoogle Scholar
  9. 9.
    X. Ke, G. J. Kramer, and O. M. Lovvik, J. Phys.: Condens. Matter 16, 6267 (2004).ADSGoogle Scholar
  10. 10.
    R. Caputo and A. Alavi, Mol. Phys. 101, 1781 (2003).ADSCrossRefGoogle Scholar
  11. 11.
    Y. Fukai and N. Okuma, Phys. Rev. Lett. 73, 1640 (1994).ADSCrossRefGoogle Scholar
  12. 12.
    Y. Fukai, Y. Ishii, Y. Goto, and K. Watanabe, J. Alloys Compd. 313, 121 (2000).CrossRefGoogle Scholar
  13. 13.
    S. Harada, S. Yokota, Y. Ishii, Y. Shizuku, M. Kanazawa, and Y. Fukai, J. Alloys Compd. 404–406, 247 (2005).CrossRefGoogle Scholar
  14. 14.
    Y. Fukai and H. Sugimoto, J. Phys.: Condens. Matter 19, 436201 (2007).ADSGoogle Scholar
  15. 15.
    Y. Fukai, Y. Shizuki, and Y. Kurokawa, J. Alloys Compd. 329, 195 (2001).Google Scholar
  16. 16.
    Y. Fukai, in Computer Aided Innovation of New Materials II, Ed. by M. Doyama, J. Kihara, M. Tanaka, and R. Yamamoto (Elsevier, Amsterdam, The Netherlands, 1993), p. 451.Google Scholar
  17. 17.
    D. S. dos Santos, S. Miraglia, and D. Fruchart, J. Alloys Compd. 291, L1 (1999).CrossRefGoogle Scholar
  18. 18.
    Y. Fukai, M. Yamakata, and T. Yagi, Z. Phys. Chem. 179, 119 (1993).CrossRefGoogle Scholar
  19. 19.
    S. Miraglia, D. Fruchart, E. K. Hlil, S. S. M. Tavares, and D. Dos Santos, J. Alloys Compd. 317–318, 77 (2001).CrossRefGoogle Scholar
  20. 20.
    V. M. Avdyukhina, A. A. Anishchenko, A. A. Katsnel’son, and G. P. Revkevich, Phys. Solid State 46(2), 265 (2004).ADSCrossRefGoogle Scholar
  21. 21.
    G. Kresse and D. Joubert, Phys. Rev. B: Condens. Matter 59, 1758 (1999).ADSCrossRefGoogle Scholar
  22. 22.
    G. Kresse and J. Hafner, Phys. Rev. B: Condens. Matter 48, 13115 (1993).ADSCrossRefGoogle Scholar
  23. 23.
    Vl. V. Voevodin, S. A. Zhumatii, and S. I. Sobolev, Otkrytye Sist., No. 7 (2012).Google Scholar
  24. 24.
    C. Kittel, Introduction to Solid State Physics (Wiley, New York, 1971).Google Scholar
  25. 25.
    C. Zhang and A. Alavi, J. Am. Chem. Soc. 127(27), 9808 (2005).CrossRefGoogle Scholar
  26. 26.
    H. Shultz and P. Ehrhart, in Landolt-Bönnstein, New Series, Group III (Springer-Verlag, Berlin, 1991).Google Scholar
  27. 27.
    Y. Kraftmakher, Phys. Rep. 299, 79 (1998).ADSCrossRefGoogle Scholar
  28. 28.
    Y. Fukai, J. Alloys Compd. 356–357, 263 (2003).CrossRefGoogle Scholar
  29. 29.
    L. Yu. Nemirovich-Danchenko, O. Yu. Vekilova, D. I. Bazhanov, S. V. Eremeev, S. E. Kul’kova, Ts. M. Khu, Yu. Zh. Li, and Yu. L. Khao, Fundam. Probl. Sovrem. Materialoved. 3(1), 17 (2006).Google Scholar
  30. 30.
    S. M. Myers, M. I. Baskes, and H. K. Birnbaum, Rev. Mod. Phys. 64, 559 (1992).ADSCrossRefGoogle Scholar
  31. 31.
    V. M. Avdyukhina, A. A. Anishchenko, A. A. Katsnel’son, and G. P. Revkevich, Phys. Solid State 46(2), 265 (2004).ADSCrossRefGoogle Scholar
  32. 32.
    O. Yu. Vekilova, D. I. Bazhanov, S. I. Simak, and I. A. Abrikosov, Phys. Rev. B: Condens. Matter 80, 024101 (2009).ADSCrossRefGoogle Scholar
  33. 33.
    Y. Tateyama and T. Ohno, Phys. Rev. B: Condens. Matter 67, 174105 (2003).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2014

Authors and Affiliations

  • I. A. Supryadkina
    • 1
  • D. I. Bazhanov
    • 1
  • A. S. Ilyushin
    • 1
  1. 1.Moscow State UniversityMoscowRussia

Personalised recommendations