Journal of Experimental and Theoretical Physics

, Volume 118, Issue 1, pp 93–103 | Cite as

Stability and properties of finite Fermi systems of particles with different masses

Solids and Liquids

Abstract

The dependence of the properties of finite two-component Fermi systems containing two types of oppositely charged particles on the ratio of their masses has been studied. A theoretical model for the quantum-mechanical description of a system containing a finite number of pairs of particles has been proposed on the basis of the Hartree-Fock approximation and the random-phase approximation with exchange. A method that makes it possible to exclude the motion of the center of mass of the system from the spectrum of excited states has been developed in the random-phase approximation with exchange. This method has been used to calculate the binding energies and static dipole polarizabilities of systems containing 8, 20, and 40 pairs of oppositely charged particles at various ratios of their masses.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. B. Migdal, Theory of Finite Fermi Systems and Applications to Atomic Nuclei (Wiley, New York, 1967; Nauka, Moscow, 1983).Google Scholar
  2. 2.
    Physics and Chemistry of Small Clusters, Ed. by P. Jena, B. K. Rao, and S. N. Khanna (Plenum, New York, 1987).Google Scholar
  3. 3.
    U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer-Verlag, Berlin, 1995).CrossRefGoogle Scholar
  4. 4.
    M. Brack, Rev. Mod. Phys. 65, 677 (1993).ADSCrossRefGoogle Scholar
  5. 5.
    D. Frenkel and D. Smit, Understanding Molecular Simulation (Academic, New York, 1996).MATHGoogle Scholar
  6. 6.
    A. V. Solov’yov, V. K. Ivanov, and R. G. Polozkov, Eur. Phys. J. D 40, 313 (2006).ADSCrossRefGoogle Scholar
  7. 7.
    P. I. Yatsyshin, V. K. Ivanov, R. G. Polozkov, and A. V. Solov’ev, Nauchno-Tekh. Vedomosti S.-Peterb. Gos. Politekh. Univ., Fiz.-Mat. Nauki, No. 1, 9 (2009).Google Scholar
  8. 8.
    P. Ring and P. Schuck, The Nuclear Many-Body Problem (Springer-Verlag, Berlin, 1980).CrossRefGoogle Scholar
  9. 9.
    V. O. Nesterenko, Preprint No. JINR-E4-92-529, JINR (Joint Institute for Nuclear Research, Dubna, Moscow oblast, Russia, 1992).Google Scholar
  10. 10.
    Electron-Hole Droplets in Semiconductors, Ed. by L. V. Keldysh and C. D. Jeffries (North-Holland, Amsterdam, The Netherlands, 1983; Nauka, Moscow, 1988).Google Scholar
  11. 11.
    V. D. Kulakovskii, V. G. Lysenko, and V. B. Timofeev, Sov. Phys.-Usp. 28(9), 735 (1985).ADSCrossRefGoogle Scholar
  12. 12.
    A. A. Rogachev, Phys. Solid State 40(5), 855 (1998).ADSCrossRefGoogle Scholar
  13. 13.
    T. M. Bragina, V. A. Kosobukin, and Yu. G. Shreter, JETP Lett. 25(11), 492 (1977).ADSGoogle Scholar
  14. 14.
    G. F. Bertsch and R. A. Broglia, Oscillations in Finite Quantum Systems (Cambridge University Press, Cambridge, 1994).Google Scholar
  15. 15.
    A. N. Ipatov, Nauchno-Tekh. Vedomosti S.-Peterb. Gos. Politekh. Univ., Fiz.-Mat. Nauki, No. 1, 60 (2013).Google Scholar
  16. 16.
    V. A. Fock, Fundamentals of Quantum Mechanics (Nauka, Moscow, 1976; Mir, Moscow, 1978).Google Scholar
  17. 17.
    G. F. Drukarev, Collisions of Electrons with Atoms and Molecules (Nauka, Moscow, 1978; Springer-Verlag, Berlin, 2013).Google Scholar
  18. 18.
    M. Ya. Amusia, Atomic Photoeffect (Nauka, Moscow, 1987; Plenum, New York, 1990).Google Scholar
  19. 19.
    L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Volume 3: Quantum Mechanics: Non-Relativistic Theory (Nauka, Moscow, 1989; Butterworth-Heinemann, Oxford, 1991).Google Scholar
  20. 20.
    V. K. Ivanov, V. A. Kharchenko, A. N. Ipatov, and M. L. Zhizhin, JETP Lett. 60(5), 353 (1994).ADSGoogle Scholar
  21. 21.
    M. Ya. Amus’ya, V. K. Ivanov, N. A. Cherepkov, and L. V. Chernysheva, Processes in Multi-Electron Atoms (Nauka, Moscow, 2006) [in Russian].Google Scholar
  22. 22.
    L. G. Gerchikov, C. Guet, and A. N. Ipatov, Phys. Rev. A: At., Mol., Opt. Phys. 66, 053202 (2002).ADSCrossRefGoogle Scholar
  23. 23.
    A. N. Ipatov, V. K. Ivanov, and R. G. Polozkov, J. Exp. Theor. Phys. 117(4), 631 (2013).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2014

Authors and Affiliations

  1. 1.St. Petersburg State Polytechnic UniversitySt. PetersburgRussia

Personalised recommendations