Advertisement

Journal of Experimental and Theoretical Physics

, Volume 118, Issue 2, pp 266–278 | Cite as

Effect of Eu doping and partial oxygen isotope substitution on magnetic phase transitions in (Pr1 − y Eu y )0.7Ca0.3CoO3 cobaltites

  • N. A. Babushkina
  • A. N. Taldenkov
  • S. V. Streltsov
  • A. V. Kalinov
  • T. G. Kuzmova
  • A. A. Kamenev
  • A. R. Kaul
  • D. I. Khomskii
  • K. I. Kugel
Order, Disorder, and Phase Transition in Condensed System

Abstract

We study experimentally and theoretically the effect of Eu doping and partial oxygen isotope substitution on the transport and magnetic characteristics and spin-state transitions in (Pr1 − y Eu y )0.7Ca0.3CoO3 cobaltites. The Eu doping level y is chosen in the range of the phase diagram near the crossover between the ferromagnetic and spin-state transitions (0.10 < y < 0.20). We prepared a series of samples with different degrees of enrichment by the heavy oxygen isotope 18O, namely, with 90, 67, 43, 17, and 0% of 18O. Based on the measurements of the ac magnetic susceptibility χ(T) and electrical resistivity ρ(T), we analyze the evolution of the sample properties with a change of the Eu and 18O content. It is demonstrated that the effect of increasing the 18O content on the system is similar to that of increasing the Eu content. The band structure calculations of the energy gap between t 2g and e g bands including the renormalization of this gap due to the electron-phonon interaction reveals the physical mechanisms underlying this similarity.

Keywords

Oxygen Isotope Local Density Approximation Metal Insulator Transition Isotope Substitution Metal Insulator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. A. Babushkina, L. M. Belova, O. Yu. Gorbenko, A. R. Kaul, A. A. Bosak, V. I. Ozhogin, and K. I. Kugel, Nature (London) 391, 159 (1998).ADSCrossRefGoogle Scholar
  2. 2.
    J. B. Goodenough and P. M. Raccah, J. Appl. Phys. 36, 1031 (1965).ADSCrossRefGoogle Scholar
  3. 3.
    K. Asai, A. Yoneda, O. Yokokura, J. M. Tranquada, G. Shirane, and K. Kohn, J. Phys. Soc. Jpn. 67, 290 (1998).ADSCrossRefGoogle Scholar
  4. 4.
    T. Saitoh, T. Mizokawa, A. Fujimori, M. Abbate, Y. Takeda, and M. Takano, Phys. Rev. B: Condens. Matter 55, 4257 (1997).ADSCrossRefGoogle Scholar
  5. 5.
    Y. Tokura, Y. Okimoto, S. Yamaguchi, H. Taniguchi, T. Kimura, and H. Takagi, Phys. Rev. B: Condens. Matter 58, R1699 (1998).ADSCrossRefGoogle Scholar
  6. 6.
    M. A. Korotin, S. Y. Ezhov, I. V. Solovyev, V. I. Anisimov, D. I. Khomskii, and G. A. Sawatzky, Phys. Rev. B: Condens. Matter 54, 5309 (1996).ADSCrossRefGoogle Scholar
  7. 7.
    K. Berggold, M. Kriener, P. Becker, M. Benomar, M. Reuther, C. Zobel, and T. Lorenz, Phys. Rev. B: Condens. Matter 78, 134402 (2008).ADSCrossRefGoogle Scholar
  8. 8.
    N. B. Ivanova, S. G. Ovchinnikov, M. M. Korshunov, I. M. Eremin, and N. V. Kazak, Phys.-Usp. 52(8), 789 (2009).ADSCrossRefGoogle Scholar
  9. 9.
    R. Ganguli, A. Maignan, C. Martin, M. Hervieu, and B. Raveau, J. Phys.: Condens. Matter 14, 8595 (2002).ADSGoogle Scholar
  10. 10.
    J. Wu and C. Leighton, Phys. Rev. B: Condens. Matter 67, 174408 (2003).ADSCrossRefGoogle Scholar
  11. 11.
    D. Phelan, Despina Louca, and K. Kamazawa, Phys. Rev. Lett. 97, 235501 (2006).ADSCrossRefGoogle Scholar
  12. 12.
    A. Podlesnyak, M. Russina, A. Furrer, A. Alfonsov, E. Vavilova, V. Kataev, B. Büchner, Th. Strässle, E. Pomjakushina, K. Conder, and D. I. Khomskii, Phys. Rev. Lett. 101, 247603 (2008).ADSCrossRefGoogle Scholar
  13. 13.
    A. O. Sboychakov, K. I. Kugel, A. L. Rakhmanov, and D. I. Khomskii, Phys. Rev. B: Condens. Matter 80, 024423 (2009).ADSCrossRefGoogle Scholar
  14. 14.
    J. Yu, Despina Louca, D. Phelan, K. Tomiyasu, K. Horigane, and K. Yamada, Phys. Rev. B: Condens. Matter 80, 052402 (2009).ADSCrossRefGoogle Scholar
  15. 15.
    S. El-Khatib, Shameek Bose, C. He, J. Kuplic, M. Laver, J. A. Borchers, Q. Huang, J. W. Lynn, J. F. Mitchell, and C. Leighton, Phys. Rev. B: Condens. Matter 82, 100411 (2010).ADSCrossRefGoogle Scholar
  16. 16.
    A. Podlesnyak, G. Ehlers, and M. Frontzek, Phys. Rev. B: Condens. Matter 83, 134430 (2011).ADSCrossRefGoogle Scholar
  17. 17.
    A. V. Kalinov, O. Yu. Gorbenko, A. N. Taldenkov, J. Rohrkamp, O. Heyer, S. Jodlauk, N. A. Babushkina, L. M. Fisher, A. R. Kaul, A. A. Kamenev, T. G. Kuzmova, D. I. Khomskii, K. Kugel, and T. Lorenz, Phys. Rev. B: Condens. Matter 81, 134427 (2010).ADSCrossRefGoogle Scholar
  18. 18.
    N. A. Babushkina, A. N. Taldenkov, L. M. Belova, E. A. Chistotina, O. Yu. Gorbenko, A. R. Kaul, K. I. Kugel, and D. I. Khomskii, Phys. Rev. B: Condens. Matter 62, R6081 (2000).ADSCrossRefGoogle Scholar
  19. 19.
    O. Yu. Gorbenko, O. V. Melnikov, A. R. Kaul, A. M. Balagurov, S. N. Bushmeleva, L. I. Koroleva, and R. V. Demin, Mater. Sci. Eng., B 116(1), 64 (2005).CrossRefGoogle Scholar
  20. 20.
    K. Kní ek, J. Hejtmánek, Z. Jirák, P. Tomeš, P. Henry, and G. André, Phys. Rev. B: Condens. Matter 79, 134103 (2009).ADSCrossRefGoogle Scholar
  21. 21.
    J. Baier, S. Jodlauk, M. Kriener, A. Reichl, C. Zobel, H. Kierspel, A. Freimuth, and T. Lorenz, Phys. Rev. B: Condens. Matter 71, 014443 (2005).ADSCrossRefGoogle Scholar
  22. 22.
    O. K. Andersen and O. Jepsen, Phys. Rev. Lett. 53, 2571 (1984).ADSCrossRefGoogle Scholar
  23. 23.
    I. A. Nekrasov, S. V. Streltsov, M. A. Korotin, and V. I. Anisimov, Phys. Rev. B: Condens. Matter 68, 235113 (2003).ADSCrossRefGoogle Scholar
  24. 24.
    S. V. Streltsov and N. A. Skorikov, Phys. Rev. B: Condens. Matter 83, 214407 (2011).ADSCrossRefGoogle Scholar
  25. 25.
    M. A. Korotin, S. Yu. Ezhov, I. V. Solovyev, V. I. Anisimov, D. I. Khomskii, and G. A. Sawatzky, Phys. Rev. B: Condens. Matter 54, 5309 (1996).ADSCrossRefGoogle Scholar
  26. 26.
    K. Kní ek, Z. Jirák, J. Hejtmánek, P. Novák, and W. Ku, Phys. Rev. B: Condens. Matter 79, 014430 (2009).CrossRefGoogle Scholar
  27. 27.
    Y. Ren, J.-Q. Yan, J.-S. Zhou, J. B. Goodenough, J. D. Jorgensen, S. Short, Th. Proffen, S. Chang, and R. J. McQueeney, Phys. Rev. B: Condens. Matter 84, 214409 (2011).ADSCrossRefGoogle Scholar
  28. 28.
    M. W. Haverkort, Z. Hu, J. C. Cezar, T. Burnus, H. Hartmann, M. Reuther, C. Zobel, T. Lorenz, A. Tanaka, N. B. Brookes, H. H. Hsieh, H.-J. Lin, C. T. Chen, and L. H. Tjeng, Phys. Rev. Lett. 97, 176405 (2006).ADSCrossRefGoogle Scholar
  29. 29.
    K. V. Lamonova, E. S. Zhitlukhina, R. Yu. Babkin, S. M. Orel, S. G. Ovchinnikov, and Yu. G. Pashkevich, J. Phys. Chem. A 115, 13596 (2011).CrossRefGoogle Scholar
  30. 30.
    S. V. Streltsov, A. S. Mylnikova, A. O. Shorikov, Z. V. Pchelkina, D. I. Khomskii, and V. I. Anisimov, Phys. Rev. B: Condens. Matter 71, 245114 (2005).ADSCrossRefGoogle Scholar
  31. 31.
    N. Babushkina, A. Taldenkov, A. Kalinov, L. M. Fisher, O. Yu. Gorbenko, T. Lorenz, D. I. Khomskii, and K. I. Kugel’, J. Exp. Theor. Phys. 111(2), 189 (2010).ADSCrossRefGoogle Scholar
  32. 32.
    N. A. Babushkina, L. M. Belova, V. I. Ozhogin, O. Yu. Gorbenko, A. R. Kaul, A. A. Bosak, D. I. Khomskii, and K. I. Kugel, J. Appl. Phys. 83, 7369 (1998).ADSCrossRefGoogle Scholar
  33. 33.
    W. Harrison, Elementary Electronic Structure (World Scientific, Singapore, 1999).CrossRefGoogle Scholar
  34. 34.
    O. Andersen and O. K. Jepsen, Physica B (Amsterdam) 91, 317 (1977).ADSCrossRefGoogle Scholar
  35. 35.
    J. C. Slater and G. F. Koster, Phys. Rev. 94, 1498 (1954).ADSCrossRefzbMATHGoogle Scholar
  36. 36.
    J. Reissland, The Physics of Phonons (Wiley, New York, 1973).Google Scholar
  37. 37.
    S. Stølen, F. Grønvold, H. Brinks, T. Atake, and H. Mori, Phys. Rev. B: Condens. Matter 55, 14103 (1997).ADSCrossRefGoogle Scholar
  38. 38.
    C. Ballhausen, Introduction to Ligand Field Theory (McGraw-Hill, New York, 1962).zbMATHGoogle Scholar
  39. 39.
    H. Sugano, S. Tanabe, and Y. Kamimura, Multiplets of Transition-Metal Ions in Crystals (Academic, New York, 1970).Google Scholar
  40. 40.
    A. Ushakov, S. V. Streltsov, and D. I. Khomskii, J. Phys.: Condens. Matter 23, 445601 (2011).ADSGoogle Scholar
  41. 41.
    H. Skiver, The LMTO Method (Springer-Verlag, Berlin, 1984).CrossRefGoogle Scholar
  42. 42.
    A. Chainani, M. Mathew, and D. D. Sarma, Phys. Rev. B: Condens. Matter 46, 9976 (1992).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2014

Authors and Affiliations

  • N. A. Babushkina
    • 1
  • A. N. Taldenkov
    • 1
  • S. V. Streltsov
    • 2
    • 3
  • A. V. Kalinov
    • 4
  • T. G. Kuzmova
    • 5
  • A. A. Kamenev
    • 5
  • A. R. Kaul
    • 5
  • D. I. Khomskii
    • 6
  • K. I. Kugel
    • 7
  1. 1.National Research Center “Kurchatov Institute,”MoscowRussia
  2. 2.Institute of Metal Physics, Ural BranchRussian Academy of SciencesYekaterinburgRussia
  3. 3.Ural Federal UniversityYekaterinburgRussia
  4. 4.All-Russian Electrical Engineering InstituteMoscowRussia
  5. 5.Department of ChemistryMoscow State UniversityMoscowRussia
  6. 6.II. Physikalisches InstitutUniversität zu KölnKölnGermany
  7. 7.Institute for Theoretical and Applied ElectrodynamicsRussian Academy of SciencesMoscowRussia

Personalised recommendations