Advertisement

Journal of Experimental and Theoretical Physics

, Volume 117, Issue 5, pp 833–845 | Cite as

Equations of state and phase diagrams of hydrogen isotopes

  • V. D. Urlin
Solids and Liquids

Abstract

A new form of the semiempirical equation of state proposed for the liquid phase of hydrogen isotopes is based on the assumption that its structure is formed by cells some of which contain hydrogen molecules and others contain hydrogen atoms. The values of parameters in the equations of state of the solid (molecular and atomic) phases as well as of the liquid phase of hydrogen isotopes (protium and deuterium) are determined. Phase diagrams, shock adiabats, isentropes, isotherms, and the electrical conductivity of compressed hydrogen are calculated. Comparison of the results of calculations with available experimental data in a wide pressure range demonstrates satisfactory coincidence.

Keywords

Shock Wave Deuterium Melting Curve Triple Point Hydrogen Isotope 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ya. B. Zel’dovich and Yu. P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (Nauka, Moscow, 1966; Academic, New York, 1967).Google Scholar
  2. 2.
    V. P. Kopyshev and V. D. Urlin, in Shock Waves and Extreme States of Matter Nauka, Moscow, 2000), p. 297 [in Russian].Google Scholar
  3. 3.
    L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Volume 5: Statistical Physics: Part 1 (Nauka, Moscow, 1964; Butterworth-Heinemann, Oxford, 1968).Google Scholar
  4. 4.
    Yu. M. Kagan, V. V. Pushkarev, and A. Kholas, Sov. Phys. JETP 46(3), 511 (1977).ADSGoogle Scholar
  5. 5.
    V. D. Urlin, Sov. Phys. JETP 22, 341 (1965).ADSGoogle Scholar
  6. 6.
    J. Frenkel, Kinetic Theory of Liquids (Dover, New York, 1954; Nauka, Leningrad, 1975).Google Scholar
  7. 7.
    G. I. Kerley, Sandia Natl. Lab. [Tech. Rep.] SAND, No. 2003-3613 (2003).Google Scholar
  8. 8.
    M. Ross, Phys. Rev. B: Condens. Matter 58, 669 (1998).ADSCrossRefGoogle Scholar
  9. 9.
    C. Narayana, H. Luo, J. Orloff, and A. L. Ruoff, Nature (London) 393, 46 (1998).ADSCrossRefGoogle Scholar
  10. 10.
    P. Loubeyre, F. Occelli, and R. LeToullec, Nature (London) 416, 613 (2002).ADSCrossRefGoogle Scholar
  11. 11.
    P. Loubeyre, R. LeToullec, D. Hausermann, M. Hanfland, R. J. Hemley, H. K. Mao, and L. W. Finger, Nature (London) 383, 702 (1996).ADSCrossRefGoogle Scholar
  12. 12.
    F. V. Grigor’ev, S. B. Kormer, O. L. Mikhailova, A. P. Tolochko, and V. D. Urlin, JETP Lett. 16(5), 201 (1972); F. V. Grigor’ev, S. B. Kormer, O. L. Mikhailova, A. P. Tolochko, and V. D. Urlin, Sov. Phys. JETP 42 (2), 378 (1975); F. V. Grigor’ev, S. B. Kormer, O. L. Mikhailova, A. P. Tolochko, and V. D. Urlin, Sov. Phys. JETP 48 (5), 847 (1978).ADSGoogle Scholar
  13. 13.
    Hydrogen: Properties, Production, Storage, Transportation, and Application (Khimiya, Moscow, 1989) [in Russian].Google Scholar
  14. 14.
    N. C. Holmes, M. Ross, and W. J. Nellis, Phys. Rev. B: Condens. Matter 52, 15835 (1995).ADSCrossRefGoogle Scholar
  15. 15.
    V. Diatschenko, C. Chu, D. H. Liebenberg, D. A. Young, M. Ross, and R. L. Mills, Phys. Rev. B: Condens. Matter 32, 381 (1985).ADSCrossRefGoogle Scholar
  16. 16.
    F. Datchi, P. Loubeyre, and R. LeToullec, Phys. Rev. B: Condens. Matter 61, 6535 (2000).ADSCrossRefGoogle Scholar
  17. 17.
    J. E. Bailey, M. D. Knudson, A. L. Carlson, G. S. Dunham, M. P. Desjarlais, D. L. Hanson, and J. R. Asay, Phys. Rev. B: Condens. Matter 78, 144107 (2008).ADSCrossRefGoogle Scholar
  18. 18.
    E. Gregoryanz, A. F. Goncharov, K. Matsuishi, H. Mao, and R. J. Hemley, Phys. Rev. Lett. 90, 175701 (2003).ADSCrossRefGoogle Scholar
  19. 19.
    S. Scandolo, Proc. Natl. Acad. Sci. USA 100, 3051 (2003).ADSCrossRefGoogle Scholar
  20. 20.
    S. M. Stishov, Phys.-Usp. 44(3), 285 (2001).ADSCrossRefGoogle Scholar
  21. 21.
    W. J. Nellis, A. C. Mitchell, M. van Thiel, G. J. Devine, R. J. Trainor, and N. Brown, J. Chem. Phys. 79, 1480 (1983).ADSCrossRefGoogle Scholar
  22. 22.
    R. F. Trunin, G. V. Boriskov, A. I. Bykov, R. I. Il’kaev, G. V. Simakov, V. D. Urlin, and A. N. Shukin, Tech. Phys. 51(7), 907 (2006).CrossRefGoogle Scholar
  23. 23.
    R. F. Trunin, V. D. Urlin, and A. B. Medvedev, Phys.-Usp. 53(6), 577 (2010).ADSCrossRefGoogle Scholar
  24. 24.
    D. G. Hicks, T. R. Boehly, P. M. Celliers, J. H. Eggert, S. J. Moon, D. D. Meyerhofer, and G. W. Collins, Phys. Rev. B: Condens. Matter 79, 014112 (2009).ADSCrossRefGoogle Scholar
  25. 25.
    L. Da Silva, P. Celliers, G. W. Collins, K. S. Budil, N. C. Holmes, T. W. Barbee, Jr., B. A. Hammel, J. D. Kilkenny, R. J. Wallace, M. Ross, R. Cauble, A. Ng, and G. Chiu, Phys. Rev. Lett. 78, 483 (1997).ADSCrossRefGoogle Scholar
  26. 26.
    G. W. Collins, L. B. Da Silva, P. Celliers, D. M. Gold, M. E. Foord, R. J. Wallace, A. Ng, S. V. Weber, K. S. Budil, and R. Cauble, Science (Washington) 281, 1178 (1998).ADSCrossRefGoogle Scholar
  27. 27.
    S. K. Grishechkin, S. K. Gruzdev, V. K. Gryaznov, M. V. Zhernokletov, R. I. Il’kaev, I. L. Iosilevskii, G. N. Kashintseva, S. I. Kirshanov, S. F. Manachkin, V. B. Mintsev, A. L. Mikhailov, A. B. Mezhevov, M. A. Mochalov, V. E. Fortov, V. V. Khrustalev, A. N. Shuikin, and A. A. Yukhimchuk, JETP Lett. 80(6), 398 (2004).ADSCrossRefGoogle Scholar
  28. 28.
    S. I. Belov, G. V. Boriskov, A. I. Bykov, R. I. Il’kaev, N. B. Luk’yanov, A. Ya. Matveev, O. L. Mikhailova, V. D. Selemir, G. V. Simakov, R. F. Trunin, I. P. Trusov, V. D. Urlin, V. E. Fortov, and A. N. Shuikin, JETP Lett. 76(7), 433 (2002).ADSCrossRefGoogle Scholar
  29. 29.
    G. V. Boriskov, A. I. Bykov, R. I. Il’kaev, V. D. Selemir, G. V. Simakov, R. F. Trunin, V. D. Urlin, V. E. Fortov, and A. N. Shuikin, Dokl. Phys. 48(10), 553 (2003).ADSCrossRefGoogle Scholar
  30. 30.
    G. V. Boriskov, A. I. Bykov, R. I. Il’kaev, V. D. Selemir, G. V. Simakov, R. F. Trunin, V. D. Urlin, A. N. Shuikin, and W. J. Nellis, Phys. Rev. B: Condens. Matter 71, 092104 (2005).ADSCrossRefGoogle Scholar
  31. 31.
    R. F. Trunin, G. V. Boriskov, A. I. Bykov, A. I. Bykov, R. I. Il’kaev, G. V. Simakov, V. D. Urlin, and A. N. Shuikin, JETP Lett. 82(5), 284 (2005).ADSCrossRefGoogle Scholar
  32. 32.
    M. D. Knudson, D. L. Hanson, J. E. Bailey, C. A. Hall, J. R. Asay, and W. W. Anderson, Phys. Rev. Lett. 87, 225501 (2001).ADSCrossRefGoogle Scholar
  33. 33.
    M. D. Knudson, D. L. Hanson, J. E. Bailey, C. A. Hall, J. R. Asay, and C. Deeney, Phys. Rev. B: Condens. Matter 69, 144209 (2004).ADSCrossRefGoogle Scholar
  34. 34.
    M. A. Mochalov, R. I. Il’kaev, V. E. Fortov, A. L. Mikhailov, Yu. M. Makarov, V. A. Arinin, S. K. Grishechkin, A. O. Blikov, V. A. Ogorodnikov, A. V. Ryzhkov, and V. K. Gryaznov, JETP Lett. 92(5), 300 (2010).ADSCrossRefGoogle Scholar
  35. 35.
    G. V. Boriskov, A. I. Bykov, N. I. Egorov, and V. N. Pavlov, in Proceedings of the 2006 International Conference on Megagauss Magnetic Field Generation and Related Topics and the International Workshop on High Energy Liners and High Energy Density Applications, Santa Fe, New Mexico, United States, November 5–10, 2006, Ed. by G. F. Kiuttu, P. J. Turchi, and R. E. Reinovsky (Institute of Electrical and Electronics Engineers (IEEE), Santa Fe, New Mexico, United States, 2007), p. 465.Google Scholar
  36. 36.
    M. A. Mochalov, R. I. Il’kaev, V. E. Fortov, A. L. Mikhailov, Yu. M. Makarov, V. A. Arinin, A. O. Blikov, A. Yu. Baurin, V. A. Komrakov, V. A. Ogorodnikov, A. V. Ryzhkov, E. A. Pronin, and A. A. Yukhimchuk, JETP 115(4), 614 (2012).ADSCrossRefGoogle Scholar
  37. 37.
    W. J. Nellis, S. T. Weir, and A. C. Mitchell, Phys. Rev. B: Condens. Matter 59, 3434 (1999).ADSCrossRefGoogle Scholar
  38. 38.
    M. V. Zhernokletov, V. A. Arinin, V. N. Buzin, et al., in A Collection of Papers Dedicated to the 65th Anniversary of the Russian Federal Nuclear Center-All-Russian Research Institute of Experimental Physics (Russian Federal Nuclear Center-All-Russian Research Institute of Experimental Physics, Sarov, Nizhni Novgorod oblast, Russia, 2011), p. 178 [in Russian].Google Scholar
  39. 39.
    S. B. Kormer, Sov. Phys.-Usp. 11(2), 229 (1968).ADSCrossRefGoogle Scholar
  40. 40.
    V. D. Urlin, in High Energy Densities: A Collection of Scientific Papers, Ed. by V. N. Mokhov, R. F. Trunin, V. M. Gorbachev, L. A. Il’kaeva, and E. V. Kulichkova (Russian Federal Nuclear Center-All-Russian Research Institute of Experimental Physics, Sarov, Nizhni Novgorod oblast, Russia, 1997), p. 284 [in Russian].Google Scholar
  41. 41.
    J. Ziman, Electrons and Phonons: The Theory of Transport Phenomena in Solids (Oxford University Press, Oxford, 1960; Inostrannaya Literatura, Moscow, 1962).zbMATHGoogle Scholar
  42. 42.
    W. J. Nellis, A. C. Mitchell, P. C. McCandless, D. J. Erskine, and S. T. Weir, Phys. Rev. Lett. 68, 2937 (1992).ADSCrossRefGoogle Scholar
  43. 43.
    A. I. Pavlovskii, G. V. Boriskov, A. I. Bykov, et al., in Proceedings of the Fourth International Conference on Megagauss Magnetic Field Generation and Related Topics, Santa Fe, New Mexico, United States, July 14–17, 1986, Ed. by C. M. Fowler, R. S. Caird, and D. J. Erickson (Plenum, New York, 1987), p. 255.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2013

Authors and Affiliations

  1. 1.Russian Federal Nuclear Center All-Russia Research Institute of Experimental PhysicsSarov, Nizhegorodskaya oblastRussia

Personalised recommendations