Journal of Experimental and Theoretical Physics

, Volume 117, Issue 3, pp 579–592 | Cite as

Effects of bulk charged impurities on the bulk and surface transport in three-dimensional topological insulators

Article

Abstract

In the three-dimensional topological insulator (TI), the physics of doped semiconductors exists literally side-by-side with the physics of ultrarelativistic Dirac fermions. This unusual pairing creates a novel playground for studying the interplay between disorder and electronic transport. In this mini-review, we focus on the disorder caused by the three-dimensionally distributed charged impurities that are ubiquitous in TIs, and we outline the effects it has on both the bulk and surface transport in TIs. We present self-consistent theories for Coulomb screening both in the bulk and at the surface, discuss the magnitude of the disorder potential in each case, and present results for the conductivity. In the bulk, where the band gap leads to thermally activated transport, we show how disorder leads to a smaller-than-expected activation energy that gives way to variable-range hopping at low temperatures. We confirm this enhanced conductivity with numerical simulations that also allow us to explore different degrees of impurity compensation. For the surface, where the TI has gapless Dirac modes, we present a theory of disorder and screening of deep impurities, and we calculate the corresponding zero-temperature conductivity. We also comment on the growth of the disorder potential in passing from the surface of the TI into the bulk. Finally, we discuss how the presence of a gap at the Dirac point, introduced by some source of time-reversal symmetry breaking, affects the disorder potential at the surface and the mid-gap density of states.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. Fu, C. L. Kane, and E. J. Mele, Phys. Rev. Lett. 98, 106803 (2007).ADSCrossRefGoogle Scholar
  2. 2.
    J. E. Moore and L. Balents, Phys. Rev. B: Condens. Matter 75, 121306 (2007).ADSCrossRefGoogle Scholar
  3. 3.
    R. Roy, Phys. Rev. B: Condens. Matter 79, 195322 (2009).ADSCrossRefGoogle Scholar
  4. 4.
    L. Fu and C. L. Kane, Phys. Rev. B: Condens. Matter 76, 045302 (2007).ADSCrossRefGoogle Scholar
  5. 5.
    X.-L. Qi, T. L. Hughes, and S.-C. Zhang, Phys. Rev. B: Condens. Matter 78, 195424 (2008).ADSCrossRefGoogle Scholar
  6. 6.
    M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010).ADSCrossRefGoogle Scholar
  7. 7.
    X.-L. Qi and S.-C. Zhang, Rev. Mod. Phys. 83, 1057 (2011).ADSCrossRefGoogle Scholar
  8. 8.
    D.-X. Qu, Y. S. Hor, J. Xiong, R. J. Cava, and N. P. Ong, Science (Washington) 329, 821 (2010).ADSCrossRefGoogle Scholar
  9. 9.
    J. G. Analytis, R. D. McDonald, S. C. Riggs, J.-H. Chu, G. S. Boebinger, and I. R. Fisher, Nat. Phys. 6, 960 (2010).CrossRefGoogle Scholar
  10. 10.
    J. G. Checkelsky, Y. S. Hor, M.-H. Liu, D.-X. Qu, R. J. Cava, and N. P. Ong, Phys. Rev. Lett. 103, 246601 (2009).ADSCrossRefGoogle Scholar
  11. 11.
    N. P. Butch, K. Kirshenbaum, P. Syers, A. B. Sushkov, G. S. Jenkins, H. D. Drew, and J. Paglione, Phys. Rev. B: Condens. Matter 81, 241301 (2010).ADSCrossRefGoogle Scholar
  12. 12.
    J. G. Analytis, J.-H. Chu, Y. Chen, F. Corredor, R. D. McDonald, Z. X. Shen, and I. R. Fisher, Phys. Rev. B: Condens. Matter 81, 205407 (2010).ADSCrossRefGoogle Scholar
  13. 13.
    K. Eto, Z. Ren, A. A. Taskin, K. Segawa, and Y. Ando, Phys. Rev. B: Condens. Matter 81, 195309 (2010).ADSCrossRefGoogle Scholar
  14. 14.
    Z. Ren, A. A. Taskin, S. Sasaki, K. Segawa, and Y. Ando, Phys. Rev. B: Condens. Matter 84, 075316 (2011).ADSCrossRefGoogle Scholar
  15. 15.
    Z. Ren, A. A. Taskin, S. Sasaki, K. Segawa, and Y. Ando, Phys. Rev. B: Condens. Matter 84, 165311 (2011).ADSCrossRefGoogle Scholar
  16. 16.
    Z. Ren, A. A. Taskin, S. Sasaki, K. Segawa, and Y. Ando, Phys. Rev. B: Condens. Matter 85, 155301 (2012).ADSCrossRefGoogle Scholar
  17. 17.
    B. Skinner, T. Chen, and B. I. Shklovskii, Phys. Rev. Lett. 109, 176801 (2012).ADSCrossRefGoogle Scholar
  18. 18.
    T. Chen and B. I. Shklovskii, Phys. Rev. B: Condens. Matter 87, 165119 (2013), arXiv:1212.4183 [condmat.str-el].ADSCrossRefGoogle Scholar
  19. 19.
    B. Skinner and B. I. Shklovskii, Phys. Rev. B: Condens. Matter 87, 075454 (2013).ADSCrossRefGoogle Scholar
  20. 20.
    H. Beidenkopf, P. Roushan, J. Seo, L. Gorman, I. Drozdov, Y. S. Hor, R. J. Cava, and A. Yazdani, Nat. Phys. 7, 939 (2011).CrossRefGoogle Scholar
  21. 21.
    L. V. Keldysh and G. P. Proshko, Sov. Phys. Solid State 5(12), 2481 (1964).Google Scholar
  22. 22.
    Y. S. Gal’pern and A. L. Efros, Sov. Phys. Semicond. 6(6), 941 (1972).Google Scholar
  23. 23.
    B. I. Shklovskii and A. L. Efros, Electronic Properties of Doped Semiconductors (Springer-Verlag, New York, 1984). http://www.tpi.umn.edu/shklovskii CrossRefGoogle Scholar
  24. 24.
    B. I. Shklovskii and A. L. Efros, Sov. Phys. JETP 35, 610 (1972).ADSGoogle Scholar
  25. 25.
    A. L. Efros and B. I. Shklovskii, J. Phys. C: Solid State Phys. 8, L49 (1975).ADSCrossRefGoogle Scholar
  26. 26.
    E. M. Gershenzon, I. N. Kurilenko, and L. B. Litvak-Gorskaya, Sov. Phys. Semicond. 8(6), 689 (1974).Google Scholar
  27. 27.
    N. G. Yaremenko, Sov. Phys. Semicond. 9(5), 554 (1975).Google Scholar
  28. 28.
    A. Möbius, M. Richter, and B. Drittler, Phys. Rev. B: Condens. Matter 45, 11568 (1992).ADSCrossRefGoogle Scholar
  29. 29.
    A. Miller and E. Abrahams, Phys. Rev. 120, 745 (1960).ADSCrossRefMATHGoogle Scholar
  30. 30.
    T. Ando, A. B. Fowler, and F. Stern, Rev. Mod. Phys. 54, 437 (1982).ADSCrossRefGoogle Scholar
  31. 31.
    M. S. Loth and B. I. Shklovskii, J. Phys.: Condens. Matter 21, 424104 (2009).ADSCrossRefGoogle Scholar
  32. 32.
    F. Stern, Phys. Rev. B: Solid State 9, 4597 (1974).ADSCrossRefGoogle Scholar
  33. 33.
    J. Xiong, Y. Khoo, S. Jia, R. J. Cava, and N. P. Ong, arXiv:1211.1906 [cond-mat.mes-hall] (2012).Google Scholar
  34. 34.
    S. Adam, E. H. Hwang, V. M. Galitski, and S. Das Sarma, Proc. Natl. Acad. Sci. USA 104, 18392 (2007).ADSCrossRefGoogle Scholar
  35. 35.
    D. Culcer, E. H. Hwang, T. D. Stanescu, and S. Das Sarma, Phys. Rev. B: Condens. Matter 82, 155457 (2010).ADSCrossRefGoogle Scholar
  36. 36.
    D. Culcer and R. Winkler, Phys. Rev. B: Condens. Matter 78, 235417 (2008).ADSCrossRefGoogle Scholar
  37. 37.
    S. Das Sarma, S. Adam, E. H. Hwang, and E. Rossi, Rev. Mod. Phys. 83, 407 (2011).ADSCrossRefGoogle Scholar
  38. 38.
    Q. Li, E. Rossi, and S. Das Sarma, Phys. Rev. B: Condens. Matter 86, 235443 (2012).ADSCrossRefGoogle Scholar
  39. 39.
    D. Kim, S. Cho, N. P. Butch, P. Syers, K. Kirshenbaum, S. Adam, J. Paglione, and M. S. Fuhrer, Nat. Phys. 8, 459 (2012).Google Scholar
  40. 40.
    M. M. Fogler, Phys. Rev. Lett. 103, 236801 (2009).ADSCrossRefGoogle Scholar
  41. 41.
    T. Hanaguri, K. Igarashi, M. Kawamura, H. Takagi, and T. Sasagawa, Phys. Rev. B: Condens. Matter 82, 081305 (2010).ADSCrossRefGoogle Scholar
  42. 42.
    P. Cheng, C. Song, T. Zhang, Y. Zhang, Y. Wang, J.-F. Jia, J. Wang, Y. Wang, B.-F. Zhu, X. Chen, X. Ma, K. He, L. Wang, X. Dai, Z. Fang, X. Xie, X.-L. Qi, C.-X. Liu, S.-C. Zhang, and Q.-K. Xue, Phys. Rev. Lett. 105, 076801 (2010).ADSCrossRefGoogle Scholar
  43. 43.
    Y. L. Chen, J.-H. Chu, J. G. Analytis, Z. K. Liu, K. Igarashi, H.-H. Kuo, X. L. Qi, S. K. Mo, R. G. Moore, D. H. Lu, M. Hashimoto, T. Sasagawa, S. C. Zhang, I. R. Fisher, Z. Hussain, and Z. X. Shen, Science (Washington) 329, 659 (2010).ADSCrossRefGoogle Scholar
  44. 44.
    Q. Liu, C.-X. Liu, C. Xu, X.-L. Qi, and S.-C. Zhang, Phys. Rev. Lett. 102, 156603 (2009).ADSCrossRefGoogle Scholar
  45. 45.
    L. Fu and C. L. Kane, Phys. Rev. Lett. 100, 096407 (2008).ADSCrossRefGoogle Scholar
  46. 46.
    B. Seradjeh, J. E. Moore, and M. Franz, Phys. Rev. Lett. 103, 066402 (2009).ADSCrossRefGoogle Scholar
  47. 47.
    Y. Zhang, K. He, C. Chang, C.-L. Song, L.-L. Wang, X. Chen, J.-F. Jia, Z. Fang, X. Dai, W.-Y. Shan, S.-Q. Shen, Q. Niu, X.-L. Qi, S.-C. Zhang, X.-C. Ma, and Q.-K. Xue, Nat. Phys. 6, 584 (2010).CrossRefGoogle Scholar
  48. 48.
    B. I. Shklovskii and A. L. Efros, JETP Lett. 44(11), 669 (1986).ADSGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2013

Authors and Affiliations

  1. 1.Fine Theoretical Physics InstituteUniversity of MinnesotaMinneapolisUSA

Personalised recommendations