Journal of Experimental and Theoretical Physics

, Volume 117, Issue 3, pp 418–438 | Cite as

Vortex matter in low-dimensional systems with proximity-induced superconductivity

  • N. B. Kopnin
  • I. M. Khaymovich
  • A. S. Mel’nikov


We theoretically study the vortex matter structure in low-dimensional systems with superconducting order induced by proximity to a bulk superconductor. We analyze the effects of microscopic coupling mechanisms between the two systems and the effects of possible mismatch in the band structures of these materials on the energy spectrum of vortex-core electrons. The unusual structure of vortex cores is discussed in the context of recent tunneling microscopy/spectroscopy experiments.


Vortex Fermi Surface Impact Parameter Vortex Core Vortex Matter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. L. McMillan, Phys. Rev. 175, 537 (1968).ADSCrossRefGoogle Scholar
  2. 2.
    P. G. de Gennes, Superconductivity of Metals and Alloys (Addison-Wesley, New York, 1989).Google Scholar
  3. 3.
    C. W. J. Beenakker, Rev. Mod. Phys. 80, 1337 (2008).ADSCrossRefGoogle Scholar
  4. 4.
    A. H. Castro Neto, F. Guinea, N. M. Peres, K. S. Novoselov, and A. K. Geim, Rev. Mod. Phys. 81, 109 (2009).ADSCrossRefGoogle Scholar
  5. 5.
    M. Kociak, A. Yu. Kasumov, S. Guéron, B. Reulet, I. I. Khodos, Yu. B. Gorbatov, V. T. Volkov, L. Vaccar- ini, and H. Bouchiat, Phys. Rev. Lett. 86, 2416 (2001).ADSCrossRefGoogle Scholar
  6. 6.
    J. C. Charlier, X. Blase, and S. Roche, Rev. Mod. Phys. 79, 677 (2007).ADSCrossRefGoogle Scholar
  7. 7.
    Xiao-Liang Qi and Shou-Cheng Zhang, Rev. Mod. Phys. 83, 1057 (2011).ADSCrossRefGoogle Scholar
  8. 8.
    H. B. Heersche, P. Jarillo-Herrero, J. B. Oostinga, L. M. K. Vandersypen, and A. F. Morpurgo, Solid State Commun. 143, 72 (2007)ADSCrossRefGoogle Scholar
  9. 9.
    L. Fu and C. L. Kane, Phys. Rev. Lett. 100, 096407 (2008).ADSCrossRefGoogle Scholar
  10. 10.
    J. Alicea, Rep. Prog. Phys. 75, 076501 (2012).ADSCrossRefGoogle Scholar
  11. 11.
    H. F. Hess, R. B. Robinson, R. C. Dynes, J. M. Valles, Jr., and J. V. Waszczak, Phys. Rev. Lett. 62, 214 (1989); H. F. Hess, R. B. Robinson, and J. V. Waszczak, Phys. Rev. Lett. 64, 2711 (1990); I. Guillamon, H. Suderow, S. Vieira, L. Cario, P. Diener, and P. Rodiere, Phys. Rev. Lett. 101, 166407 (2008).ADSCrossRefGoogle Scholar
  12. 12.
    C. Caroli, P. G. de Gennes, and J. Matricon, Phys. Lett. 9, 307 (1964).ADSCrossRefzbMATHGoogle Scholar
  13. 13.
    A. Kastalsky, A. W. Kleinsasser, L. H. Greene, R. Bhat, F. P. Milliken, and J. P. Harbison, Phys. Rev. Lett. 67, 3026 (1991); D. Quirion, C. Hoffmann, F. Lefloch, and M. Sanquer, Phys. Rev. B: Condens. Matter 65, 100508(R) (2002).ADSCrossRefGoogle Scholar
  14. 14.
    B. J. van Wees, P. de Vries, P. Magnee, and T. M. Klapwijk, Phys. Rev. Lett. 69, 510 (1992).ADSCrossRefGoogle Scholar
  15. 15.
    A. F. Volkov, JETP Lett. 55(12), 746 (1992); A. F. Volkov, Physica B (Amsterdam) 203, 267 (1994).ADSGoogle Scholar
  16. 16.
    A. F. Volkov, P. H. C. Magnée, B. J. van Wees, and T. M. Klapwijk, Physica C (Amsterdam) 242, 261 (1995).ADSCrossRefGoogle Scholar
  17. 17.
    F. W. J. Hekking and Yu. V. Nazarov, Phys. Rev. B: Condens. Matter 49, 6847 (1994).ADSCrossRefGoogle Scholar
  18. 18.
    N. B. Kopnin, Phys. Rev. B: Condens. Matter 57, 11775 (1998); A. S. Mel’nikov, Phys. Rev. Lett. 86, 4108 (2001).ADSCrossRefGoogle Scholar
  19. 19.
    Ø. Fischer, M. Kugler, I. Maggio-Aprile, C. Berthod, and Ch. Renner, Rev. Mod. Phys. 79, 353 (2007).ADSCrossRefGoogle Scholar
  20. 20.
    A. E. Koshelev and A. A. Golubov, Phys. Rev. Lett. 90, 177002 (2003).ADSCrossRefGoogle Scholar
  21. 21.
    F. Giubileo, D. Roditchev, W. Sacks, R. Lamy, D. X. Thanh, J. Klein, S. Miraglia, D. Fruchart, J. Marcus, and Ph. Monod, Phys. Rev. Lett. 87, 177008 (2001).ADSCrossRefGoogle Scholar
  22. 22.
    N. B. Kopnin and A. S. Melnikov, Phys. Rev. B: Condens. Matter 84, 064524 (2011).ADSCrossRefGoogle Scholar
  23. 23.
    G. Fagas, G. Tkachov, A. Pfund, and K. Richter, Phys. Rev. B: Condens. Matter 71, 224510 (2005).ADSCrossRefGoogle Scholar
  24. 24.
    J. D. Sau, R. M. Lutchyn, S. Tewari, and S. Das Sarma, Phys. Rev. B 82, 094522 (2010).ADSCrossRefGoogle Scholar
  25. 25.
    A. L. Rakhmanov, A. V. Rozhkov, and Franco Nori, Phys. Rev. B: Condens. Matter 84, 075141 (2011); R. S. Akzyanov, A. V. Rozhkov, A. L. Rakhmanov, F. Nori, arXiv:cond-mat/1307.0923.ADSCrossRefGoogle Scholar
  26. 26.
    P. A. Ioselevich, P. M. Ostrovsky, and M. V. Feigelman, Phys. Rev. B: Condens. Matter 86, 035441 (2012).ADSCrossRefGoogle Scholar
  27. 27.
    N. B. Kopnin, Theory of Nonequilibrium Superconductivity (Oxford University Press, Oxford, 2001).CrossRefGoogle Scholar
  28. 28.
    A. A. Abrikosov, L. P. Gor’kov, and I. E. Dzyaloshinskii, Quantum Field Theoretical Methods in Statistical Physics (Fizmatgiz, Moscow, 1962; Pergamon, London, 1965).Google Scholar
  29. 29.
    C. W. J. Beenakker, Phys. Rev. Lett. 97, 067007 (2006).ADSCrossRefGoogle Scholar
  30. 30.
    Y. Oreg, G. Refael, and F. von Oppen, Phys. Rev. Lett. 105, 177002 (2010).ADSCrossRefGoogle Scholar
  31. 31.
    E. Perfetto, Phys. Rev. Lett. 110, 087001 (2013).ADSCrossRefGoogle Scholar
  32. 32.
    L. Kramer and W. Pesch, Z. Phys. 269, 59 (1974).ADSCrossRefGoogle Scholar
  33. 33.
    G. E. Volovik, JETP Lett. 57(4), 244 (1993); G. E. Volovik, The Universe in a Helium Droplet (Oxford University Press, Oxford, 2003).ADSGoogle Scholar
  34. 34.
    K. Shiozaki, T. Fukui, and S. Fujimoto, Phys. Rev. B: Condens. Matter 86, 125405 (2012).ADSCrossRefGoogle Scholar
  35. 35.
    N. Schopohl and K. Maki, Phys. Rev. B: Condens. Matter 52, 490 (1995).ADSCrossRefGoogle Scholar
  36. 36.
    I. Maggio-Aprile, Ch. Renner, A. Erb, E. Walker, and Ø. Fischer, Phys. Rev. Lett. 75, 2754 (1995); B. W. Hoogenboom, Ch. Renner, B. Revaz, I. Maggio-Aprile, and Ø. Fischer, Physica C (Amsterdam) 332, 440 (2000); S. H. Pan, E. W. Hudson, A. K. Gupta, K.-W. Ng, H. Eisaki, S. Uchida, and J. C. Davis, Phys. Rev. Lett. 85, 1536 (2000).ADSCrossRefGoogle Scholar
  37. 37.
    L. P. Gor’kov and N. B. Kopnin, Sov. Phys. JETP 38(1), 195 (1974).ADSGoogle Scholar
  38. 38.
    A. Berman, and R. J. Plemmons, Nonnegative Matrices in the Mathematical Sciences (Society for Industrial and Applied Mathematics, Philadelphia, Pennsylvania, United States, 1994).CrossRefzbMATHGoogle Scholar
  39. 39.
    A. A. Golubov, Czech. J. Phys. 46, 569 (1996).CrossRefGoogle Scholar
  40. 40.
    M. Yu. Kupriyanov, Sverkhprovodimost: Fiz., Khim., Tekh. 2, 5 (1989).Google Scholar
  41. 41.
    A. A. Golubov and U. Hartmann, Phys. Rev. Lett. 72, 3602 (1994).ADSCrossRefGoogle Scholar
  42. 42.
    M. R. Eskildsen, M. Kugler, S. Tanaka, J. Jun, S. M. Kazakov, J. Karpinski, and Ø. Fischer, Phys. Rev. Lett. 89, 187003 (2002).ADSCrossRefGoogle Scholar
  43. 43.
    A. D. Beyer, M. S. Grinolds, M. L. Teague, S. Tajima, and N.-C. Yeh, Europhys. Lett. 87, 37005 (2009).ADSCrossRefGoogle Scholar
  44. 44.
    R. Jackiw and P. Rossi, Nucl. Phys. B 190, 681 (1981).ADSCrossRefGoogle Scholar
  45. 45.
    D. L. Bergman and K. L. Hur, arXiv:cond-mat//0806.0379.Google Scholar
  46. 46.
    I. M. Khaymovich, N. B. Kopnin, A. S. Mel’nikov, and I. A. Shereshevskii, Phys. Rev. B: Condens. Matter 79, 224506 (2009).ADSCrossRefGoogle Scholar
  47. 47.
    A. S. Mel’nikov and M. A. Silaev, JETP Lett. 83(12), 578 (2006).CrossRefGoogle Scholar
  48. 48.
    N. B. Kopnin, A. S. Mel’nikov, V. I. Pozdnyakova, D. A. Ryzhov, I. A. Shereshevskii, and V. M. Vinokur, Phys. Rev. Lett. 95, 197002 (2005); A. S. Mel’nikov, D. A. Ryzhov, and M. A. Silaev, Phys. Rev. B: Condens. Matter 78, 064513 (2008).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2013

Authors and Affiliations

  • N. B. Kopnin
    • 1
    • 2
  • I. M. Khaymovich
    • 3
  • A. S. Mel’nikov
    • 3
  1. 1.Lounasmaa LaboratoryAalto UniversityAaltoFinland
  2. 2.Landau Institute for Theoretical PhysicsRussian Academy of SciencesMoscowRussia
  3. 3.Institute for Physics of MicrostructuresRussian Academy of SciencesNizhni NovgorodRussia

Personalised recommendations